Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Sainbayar Sukhbaatar

New York University

Joint work with:
Arthur Szlam
Facebook AI Research

Rob Fergus
Facebook
AI Research \& NYU

Motivation

- Reinforcement Learning (RL) typically requires a huge number of episodes
- Often supervision signal (i.e. reward) is expensive to obtain
- Can we learn about environment in unsupervised way?
- Assumption: interaction with the environment is cheap

Approach

- Agent plays a game where it challenges itself
- Single physical agent, but two separate minds:
- Alice's job is to propose a task
- Bob's job is to complete that task
- Alice propose a task by actually doing it
- We consider two classes of environments:

1. Actions are reversible within same time \rightarrow reverse self-play
2. Reset to the initial state is allowed \rightarrow repeat self-play

- Jointly train with self-play and target task
- Randomly choose type of episode

Reverse self-play

Internal reward during self-play

- Bob's reward:

$$
R_{b}=-t_{\substack{ \\\text { Time spent }}}
$$

Alice's reward:

$$
R_{a}=\max \left(0, t_{b}-t_{a}\right)
$$

Intuition: make Bob fail with less effort

If Bob fails: $t_{b}=t_{\max }$

- Alice's optimal behavior is to find simplest tasks that Bob cannot complete.
- Makes learning for Bob easy since the new task will be only just beyond his current capabilities.
- Gives self-regulating feedback between Alice and Bob
- Yields automatic curriculum

Parameterizing Policy Functions

- Self-play:

$$
a_{\text {Alice }}=f_{A}\left(s_{t}, s_{0}\right)
$$

$$
a_{\mathrm{Bob}}=f_{B}\left(s_{t}^{\prime}, s_{0}^{\prime}\right)
$$

- Target task: $\quad a_{\text {Target }}=f_{B}\left(s_{t}^{\prime \prime}, e\right)$
task description (dummy vector)
- Self-play lets Bob build representation of environment
- Assumption: self-play tasks are close to target task
- Explore discrete / continuous settings
- Using small NN for $\mathrm{f}($.)

Self-play equilibrium \& Universal Bob

- Claim: Under some strong assumptions (tabular policies, finite state, etc.), Bob must learn all possible tasks, i.e. learn how to transition between any pair of states as efficiently as possible.
- Let's assume the self-play has converged to a Nash equilibrium (can't gain anything if other's policy is fixed)
- If Bob fails on a certain task, then Alice would propose that task to increase her reward
- Then Bob must've seen this task and learnt it to increase his reward
- Thus: Bob must have learned all possible tasks.

Related work

- Self-play: checkers (Samuel, 1959), backgammon (Tesauro, 1995), and Go, (Silver et al., 2016), and RoboSoccer (Riedmiller et al., 2009)
- Uses external reward vs internal reward for ours
- GANs (Goodfellow et al., 2014): dialogue generation (Li et al., 2017), variational auto-encoders (Mescheder et al., 2017)
- Alice \rightarrow "generator" of hard examples; Bob \rightarrow "discriminator"
- Intrinsic motivation (Barto, 2013; Singh et al., 2004; Klyubin et al., 2005; Schmidhuber, 1991): curiosity-driven exploration (Schmidhuber, 1991; Bellemare et al., 2016; Strehl \& Littman, 2008; Lopes et al., 2012; Tang et al., 2016)
- Reward for novelty of state
- Ours: learning to transition between pairs of states
- Robust Adversarial Reinforcement Learning (Pinto et al. 2017)
- Concurrent work; adversarial peturbations to state

Experiments

- Use Reinforce algorithm with learnt baseline and entropy regularization
- 2-layer NN model for Alice and Bob (separate)
- Train on 20% target task $+80 \%$ self-play episodes
- Discrete and continuous environments
- Measure target task reward vs \# target task episodes
- Self-play episodes are "free"
- Baselines:
- No self-play: just target task episodes
- Random Alice: Alice takes random actions. Bob learns policy
- Exploration approaches: count-based \& variants

Toy example: Long hallway

- Learn to navigate in a long corridor
- Reverse self-play
- Simple tabular policies

MazeBase: LightKey task

- Small 2D grid separated into two rooms by a wall
- The grid is procedurally generated
- Object/agent locations randomized for each episode
- Toggle the key to lock/unlock door
- Can't go through a locked door
- Toggle the light on/off
- Only the switch is visible in dark

- Target task is to reach the goal flag in the opposite room when light is off and door is locked.

MazeBase: LightKey task

- Learn to navigate in a long corridor

MazeBase: LightKey task

RL-Lab: Mountain Car

- Control a car stuck in 1D valley
- Need to build momentum by reversing

- Sparse reward
- +1 reward only if it reaches the left hill top
- Hard task because random exploration fails
- Asymmetric environment \rightarrow repeat self-play
- As good as other exploration methods

RLLab: Swimmer Gather

- Control a worm with two flexible joints, swimming in a 2 D viscous fluid
- Reward +1 for eating green apples and -1 for touching red bombs
- Reverse self-play even though the environment is not strictly symmetric
- No apples or bombs during self-play
- Use only location (not full state) when deciding Bob's success during self-play

RLLab: Swimmer Gather

- Mean \& S.D. over 10 runs
- Reinforce on target task alone gets zero reward

RLLab: Swimmer Gather

- Policy trained with Reinforce + self-play

RLLab: Swimmer Gather

- Distribution of locations where Alice hands over to Bob

Discussion

Paper: https://arxiv.org/abs/1703.05407

- Simple methods that works with discrete and continuous environments
- Meta-exploration for Alice
- We want Alice to propose diverse set of tasks
- But Alice focuses on the single best task
- Multiple Alices?
- Future works:
- Alice explicitly mark the target state
- Alice propose task by communication without doing it
- Alice propose a hypothesis and Bob test it

