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We propose a neural network model “MemN2N” with external memory, which performs 
multiple lookups on memory before producing output. It is a soft attention version of  
“Memory Network” [1], which has hard attention and requires explicit supervision of  attention, 
which severely limits its application. Furthermore, MemN2N can be trained end-to-end with 
backpropagation using supervision only on the final output.  

We proposed an external memory model with 
soft attention. The model can be trained end-to-
end with backpropagation. The experiments 
show good results on a toy QA tasks and 
competitive performance on language modeling. 
We also showed the model can be extended to 
writing and reinforcement learning. 
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Text8 (Wikipedia) 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
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150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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–  Text8 (Wikipedia):  16M words,  40K vocab 

•  Model: RNN controller, layer-wise weight tying 
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Experiment on bAbI Q&A data  (http://fb.ai/babi) 

•  Data: 20 bAbI tasks (Weston et al. arXiv 1502.05698, 2015b) 
•  Answer questions after reading short story 
•  Small vocabulary, simple language 
•  Different tasks require different reasoning 
•  Training data size 1K or 10K for each task  

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I
sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Input numbers Reserved for output 

Initial memory content 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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Motivation

• Reinforcement Learning (RL) typically requires a 
huge number of  episodes
• Often supervision signal (i.e. reward) 

is expensive to obtain

• Can we learn about environment 
in unsupervised way? 
• Assumption: interaction with 

the environment is cheap



Approach

• Agent plays a game where it challenges itself  
• Single physical agent, but two separate minds:
• Alice’s job is to propose a task
• Bob’s job is to complete that task

• Alice propose a task by actually doing it
• We consider two classes of  environments:

1. Actions are reversible within same time à reverse self-play
2. Reset to the initial state is allowed à repeat self-play

• Jointly train with self-play and target task
• Randomly choose type of  episode
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Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

to be rewarded, thus repeating Alice’s task instead of reversing
it. See Fig. 1 for an example, and also Algorithm 1.

In both cases, this self-play between Alice and Bob only in-
volves internal reward (detailed below), thus multiple rounds
can be performed without needing any supervisory signal from
the environment. As such, it comprises a form of unsupervised
training where Alice and Bob explore the environment and learn
how it operates. This exploration can be leveraged for some
target task by using Bob’s policy as the agent’s initialization.
Alternatively, the self-play and target task episodes can be inter-
leaved, biasing the exploration to be in service of the target task.

We choose the reward structure for Alice and Bob to encourage
Alice to push Bob past his comfort zone, but not give him
impossible tasks. Denoting Bob’s reward by Rb and Alice’s
reward by Ra, we use

Rb=�tb (1)

where tb is the time taken by Bob to complete his task (and
is set it set maximum value tb=tMax if Bob fails) and

Ra=max(0,tb�ta) (2)

where ta is the time until Alice performs the STOP action. Thus
Alice is rewarded if Bob takes more time, but the negative term
on her own time will encourage Alice not to take too many
steps when Bob is failing. For both reversible and resettable
environments, Alice must limit her steps to make Bob’s task
easier, thus Alice’s optimal behavior is to find simplest tasks
that Bob cannot complete. This eases learning for Bob since
the new task will be only just beyond his current capabilities.
The self-regulating feedback between Alice and Bob allows
them to automatically construct a curriculum for exploration,
a key contribution of our approach.

2.1. Parameterizing Alice and Bob’s actions

Alice and Bob each have policy functions which take as input
two observations of state variables, and output a distribution
over actions . In Alice’s case, the function will be of the form

aAlice=fA(st,s0),

where s0 is the observation of the initial state of the environ-
ment and st is the observation of the current state. In Bob’s
case, the function will be

aBob=fB(s
0
t,s

0
0),

where s00 = s0 when we have a reversible environment. In a
resettable environment s00 is the state where Alice executed
the stop action. Note that the “observations” can include a
parameterized model of a raw observation. When a target task
is presented, the agent’s policy function is aTarget =fB(s00t ,e),
where e is a special observation corresponding to the target task.

In the experiments below, we demonstrate our approach in
settings where f is tabular; where it is a neural network taking
discrete inputs, and where it is a neural network taking in
continuous inputs.

2.2. Universal Bob in the tabular setting

We now show that in environments with finite states, tabular
policies, and Markovian transitions, we can interpret the reset
and reverse games as training the agents to find policies that
can get from any state to any other in the least expected number
of steps.

Note that as discussed above, the policy table for both Alice
and Bob is indexed by (s0,sT ), not just by si. In particular,
with the assumptions above, this means that there is a policy
⇡fast such that ⇡fast(s0,sT ) has the smallest expected number
of steps to transition from s0 to sT . Call any such policy a fast
policy. It is clear that ⇡fast is a universal policy for Bob, such
that for any Alice policy ⇡a, ⇡fast is optimal with respect to ⇡a.
In a reset game, with deterministic transitions, ⇡fast nets Bob
a return of 0, and in the reverse game, the return of ⇡fast against
an optimal Alice also using ⇡fast can be considered a measure
of the reversibility of the environment.

For this discussion, assume that we are using the reset game or
the reverse game in a perfectly reversible environment. If ⇡A
and ⇡B are policies of Alice and Bob that are in equilibrium
(that is, one cannot make Alice better without changing Bob,
and one cannot make Bob better without changing Alice), ⇡B
is a fast policy. To see this, note that if ⇡B is not fast, then
we can replace it with ⇡fast, and then for any challenge (s0,sT )
that Alice gives Bob with nonzero probability and for which
⇡fast(s0,sT ) gives a smaller number of expected steps, Bob
will get a higher reward. On the other hand, if Alice is not
giving positive probability to some challenge (s0,sT ) (where
the initial probability of Alice starting at s0 is nonzero), and
if Bob’s policy on (s0, sT ) is not fast, then Alice can use
⇡fast(s0,sT ) and increase her reward.

Thus we can see that in the finite, tabular, and Markovian
setting, the asymmetric self-play can be interpreted as a method
for training Alice and Bob to be able to transit between pairs
of states as efficiently as possible.

3. Related Work

Self-play arises naturally in reinforcement learning, and has
been well studied. For example, for playing checkers (Samuel,
1959), backgammon (Tesauro, 1995), and Go, (Silver et al.,
2016), and in in multi-agent games such as RoboSoccer
(Riedmiller et al., 2009). Here, the agents or teams of agents
compete for external reward. This differs from our scheme
where the reward is purely internal and the self-play is a way of
motivating an agent to learn about its environment to augment
sparse rewards from separate target tasks.
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to be rewarded, thus repeating Alice’s task instead of reversing
it. See Fig. 1 for an example, and also Algorithm 1.

In both cases, this self-play between Alice and Bob only in-
volves internal reward (detailed below), thus multiple rounds
can be performed without needing any supervisory signal from
the environment. As such, it comprises a form of unsupervised
training where Alice and Bob explore the environment and learn
how it operates. This exploration can be leveraged for some
target task by using Bob’s policy as the agent’s initialization.
Alternatively, the self-play and target task episodes can be inter-
leaved, biasing the exploration to be in service of the target task.

We choose the reward structure for Alice and Bob to encourage
Alice to push Bob past his comfort zone, but not give him
impossible tasks. Denoting Bob’s reward by Rb and Alice’s
reward by Ra, we use

Rb=�tb (1)

where tb is the time taken by Bob to complete his task (and
is set it set maximum value tb=tMax if Bob fails) and

Ra=max(0,tb�ta) (2)

where ta is the time until Alice performs the STOP action. Thus
Alice is rewarded if Bob takes more time, but the negative term
on her own time will encourage Alice not to take too many
steps when Bob is failing. For both reversible and resettable
environments, Alice must limit her steps to make Bob’s task
easier, thus Alice’s optimal behavior is to find simplest tasks
that Bob cannot complete. This eases learning for Bob since
the new task will be only just beyond his current capabilities.
The self-regulating feedback between Alice and Bob allows
them to automatically construct a curriculum for exploration,
a key contribution of our approach.

2.1. Parameterizing Alice and Bob’s actions

Alice and Bob each have policy functions which take as input
two observations of state variables, and output a distribution
over actions . In Alice’s case, the function will be of the form

aAlice=fA(st,s0),

where s0 is the observation of the initial state of the environ-
ment and st is the observation of the current state. In Bob’s
case, the function will be

aBob=fB(s
0
t,s

0
0),

where s00 = s0 when we have a reversible environment. In a
resettable environment s00 is the state where Alice executed
the stop action. Note that the “observations” can include a
parameterized model of a raw observation. When a target task
is presented, the agent’s policy function is aTarget =fB(s00t ,e),
where e is a special observation corresponding to the target task.

In the experiments below, we demonstrate our approach in
settings where f is tabular; where it is a neural network taking
discrete inputs, and where it is a neural network taking in
continuous inputs.

2.2. Universal Bob in the tabular setting

We now show that in environments with finite states, tabular
policies, and Markovian transitions, we can interpret the reset
and reverse games as training the agents to find policies that
can get from any state to any other in the least expected number
of steps.

Note that as discussed above, the policy table for both Alice
and Bob is indexed by (s0,sT ), not just by si. In particular,
with the assumptions above, this means that there is a policy
⇡fast such that ⇡fast(s0,sT ) has the smallest expected number
of steps to transition from s0 to sT . Call any such policy a fast
policy. It is clear that ⇡fast is a universal policy for Bob, such
that for any Alice policy ⇡a, ⇡fast is optimal with respect to ⇡a.
In a reset game, with deterministic transitions, ⇡fast nets Bob
a return of 0, and in the reverse game, the return of ⇡fast against
an optimal Alice also using ⇡fast can be considered a measure
of the reversibility of the environment.

For this discussion, assume that we are using the reset game or
the reverse game in a perfectly reversible environment. If ⇡A
and ⇡B are policies of Alice and Bob that are in equilibrium
(that is, one cannot make Alice better without changing Bob,
and one cannot make Bob better without changing Alice), ⇡B
is a fast policy. To see this, note that if ⇡B is not fast, then
we can replace it with ⇡fast, and then for any challenge (s0,sT )
that Alice gives Bob with nonzero probability and for which
⇡fast(s0,sT ) gives a smaller number of expected steps, Bob
will get a higher reward. On the other hand, if Alice is not
giving positive probability to some challenge (s0,sT ) (where
the initial probability of Alice starting at s0 is nonzero), and
if Bob’s policy on (s0, sT ) is not fast, then Alice can use
⇡fast(s0,sT ) and increase her reward.

Thus we can see that in the finite, tabular, and Markovian
setting, the asymmetric self-play can be interpreted as a method
for training Alice and Bob to be able to transit between pairs
of states as efficiently as possible.

3. Related Work

Self-play arises naturally in reinforcement learning, and has
been well studied. For example, for playing checkers (Samuel,
1959), backgammon (Tesauro, 1995), and Go, (Silver et al.,
2016), and in in multi-agent games such as RoboSoccer
(Riedmiller et al., 2009). Here, the agents or teams of agents
compete for external reward. This differs from our scheme
where the reward is purely internal and the self-play is a way of
motivating an agent to learn about its environment to augment
sparse rewards from separate target tasks.

Time spent Intuition: make Bob fail with less effort

Internal reward during self-play
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to be rewarded, thus repeating Alice’s task instead of reversing
it. See Fig. 1 for an example, and also Algorithm 1.

In both cases, this self-play between Alice and Bob only in-
volves internal reward (detailed below), thus multiple rounds
can be performed without needing any supervisory signal from
the environment. As such, it comprises a form of unsupervised
training where Alice and Bob explore the environment and learn
how it operates. This exploration can be leveraged for some
target task by using Bob’s policy as the agent’s initialization.
Alternatively, the self-play and target task episodes can be inter-
leaved, biasing the exploration to be in service of the target task.

We choose the reward structure for Alice and Bob to encourage
Alice to push Bob past his comfort zone, but not give him
impossible tasks. Denoting Bob’s reward by Rb and Alice’s
reward by Ra, we use

Rb=�tb (1)

where tb is the time taken by Bob to complete his task (and
is set it set maximum value tb=tMax if Bob fails) and

Ra=max(0,tb�ta) (2)

where ta is the time until Alice performs the STOP action. Thus
Alice is rewarded if Bob takes more time, but the negative term
on her own time will encourage Alice not to take too many
steps when Bob is failing. For both reversible and resettable
environments, Alice must limit her steps to make Bob’s task
easier, thus Alice’s optimal behavior is to find simplest tasks
that Bob cannot complete. This eases learning for Bob since
the new task will be only just beyond his current capabilities.
The self-regulating feedback between Alice and Bob allows
them to automatically construct a curriculum for exploration,
a key contribution of our approach.

2.1. Parameterizing Alice and Bob’s actions

Alice and Bob each have policy functions which take as input
two observations of state variables, and output a distribution
over actions . In Alice’s case, the function will be of the form

aAlice=fA(st,s0),

where s0 is the observation of the initial state of the environ-
ment and st is the observation of the current state. In Bob’s
case, the function will be

aBob=fB(s
0
t,s

0
0),

where s00 = s0 when we have a reversible environment. In a
resettable environment s00 is the state where Alice executed
the stop action. Note that the “observations” can include a
parameterized model of a raw observation. When a target task
is presented, the agent’s policy function is aTarget =fB(s00t ,e),
where e is a special observation corresponding to the target task.

In the experiments below, we demonstrate our approach in
settings where f is tabular; where it is a neural network taking
discrete inputs, and where it is a neural network taking in
continuous inputs.

2.2. Universal Bob in the tabular setting

We now show that in environments with finite states, tabular
policies, and Markovian transitions, we can interpret the reset
and reverse games as training the agents to find policies that
can get from any state to any other in the least expected number
of steps.

Note that as discussed above, the policy table for both Alice
and Bob is indexed by (s0,sT ), not just by si. In particular,
with the assumptions above, this means that there is a policy
⇡fast such that ⇡fast(s0,sT ) has the smallest expected number
of steps to transition from s0 to sT . Call any such policy a fast
policy. It is clear that ⇡fast is a universal policy for Bob, such
that for any Alice policy ⇡a, ⇡fast is optimal with respect to ⇡a.
In a reset game, with deterministic transitions, ⇡fast nets Bob
a return of 0, and in the reverse game, the return of ⇡fast against
an optimal Alice also using ⇡fast can be considered a measure
of the reversibility of the environment.

For this discussion, assume that we are using the reset game or
the reverse game in a perfectly reversible environment. If ⇡A
and ⇡B are policies of Alice and Bob that are in equilibrium
(that is, one cannot make Alice better without changing Bob,
and one cannot make Bob better without changing Alice), ⇡B
is a fast policy. To see this, note that if ⇡B is not fast, then
we can replace it with ⇡fast, and then for any challenge (s0,sT )
that Alice gives Bob with nonzero probability and for which
⇡fast(s0,sT ) gives a smaller number of expected steps, Bob
will get a higher reward. On the other hand, if Alice is not
giving positive probability to some challenge (s0,sT ) (where
the initial probability of Alice starting at s0 is nonzero), and
if Bob’s policy on (s0, sT ) is not fast, then Alice can use
⇡fast(s0,sT ) and increase her reward.

Thus we can see that in the finite, tabular, and Markovian
setting, the asymmetric self-play can be interpreted as a method
for training Alice and Bob to be able to transit between pairs
of states as efficiently as possible.

3. Related Work

Self-play arises naturally in reinforcement learning, and has
been well studied. For example, for playing checkers (Samuel,
1959), backgammon (Tesauro, 1995), and Go, (Silver et al.,
2016), and in in multi-agent games such as RoboSoccer
(Riedmiller et al., 2009). Here, the agents or teams of agents
compete for external reward. This differs from our scheme
where the reward is purely internal and the self-play is a way of
motivating an agent to learn about its environment to augment
sparse rewards from separate target tasks.
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to be rewarded, thus repeating Alice’s task instead of reversing
it. See Fig. 1 for an example, and also Algorithm 1.

In both cases, this self-play between Alice and Bob only in-
volves internal reward (detailed below), thus multiple rounds
can be performed without needing any supervisory signal from
the environment. As such, it comprises a form of unsupervised
training where Alice and Bob explore the environment and learn
how it operates. This exploration can be leveraged for some
target task by using Bob’s policy as the agent’s initialization.
Alternatively, the self-play and target task episodes can be inter-
leaved, biasing the exploration to be in service of the target task.

We choose the reward structure for Alice and Bob to encourage
Alice to push Bob past his comfort zone, but not give him
impossible tasks. Denoting Bob’s reward by Rb and Alice’s
reward by Ra, we use

Rb=�tb (1)

where tb is the time taken by Bob to complete his task (and
is set it set maximum value tb=tMax if Bob fails) and

Ra=max(0,tb�ta) (2)

where ta is the time until Alice performs the STOP action. Thus
Alice is rewarded if Bob takes more time, but the negative term
on her own time will encourage Alice not to take too many
steps when Bob is failing. For both reversible and resettable
environments, Alice must limit her steps to make Bob’s task
easier, thus Alice’s optimal behavior is to find simplest tasks
that Bob cannot complete. This eases learning for Bob since
the new task will be only just beyond his current capabilities.
The self-regulating feedback between Alice and Bob allows
them to automatically construct a curriculum for exploration,
a key contribution of our approach.

2.1. Parameterizing Alice and Bob’s actions

Alice and Bob each have policy functions which take as input
two observations of state variables, and output a distribution
over actions . In Alice’s case, the function will be of the form

aAlice=fA(st,s0),

where s0 is the observation of the initial state of the environ-
ment and st is the observation of the current state. In Bob’s
case, the function will be

aBob=fB(s
0
t,s

0
0),

where s00 = s0 when we have a reversible environment. In a
resettable environment s00 is the state where Alice executed
the stop action. Note that the “observations” can include a
parameterized model of a raw observation. When a target task
is presented, the agent’s policy function is aTarget =fB(s00t ,e),
where e is a special observation corresponding to the target task.

In the experiments below, we demonstrate our approach in
settings where f is tabular; where it is a neural network taking
discrete inputs, and where it is a neural network taking in
continuous inputs.

2.2. Universal Bob in the tabular setting

We now show that in environments with finite states, tabular
policies, and Markovian transitions, we can interpret the reset
and reverse games as training the agents to find policies that
can get from any state to any other in the least expected number
of steps.

Note that as discussed above, the policy table for both Alice
and Bob is indexed by (s0,sT ), not just by si. In particular,
with the assumptions above, this means that there is a policy
⇡fast such that ⇡fast(s0,sT ) has the smallest expected number
of steps to transition from s0 to sT . Call any such policy a fast
policy. It is clear that ⇡fast is a universal policy for Bob, such
that for any Alice policy ⇡a, ⇡fast is optimal with respect to ⇡a.
In a reset game, with deterministic transitions, ⇡fast nets Bob
a return of 0, and in the reverse game, the return of ⇡fast against
an optimal Alice also using ⇡fast can be considered a measure
of the reversibility of the environment.

For this discussion, assume that we are using the reset game or
the reverse game in a perfectly reversible environment. If ⇡A
and ⇡B are policies of Alice and Bob that are in equilibrium
(that is, one cannot make Alice better without changing Bob,
and one cannot make Bob better without changing Alice), ⇡B
is a fast policy. To see this, note that if ⇡B is not fast, then
we can replace it with ⇡fast, and then for any challenge (s0,sT )
that Alice gives Bob with nonzero probability and for which
⇡fast(s0,sT ) gives a smaller number of expected steps, Bob
will get a higher reward. On the other hand, if Alice is not
giving positive probability to some challenge (s0,sT ) (where
the initial probability of Alice starting at s0 is nonzero), and
if Bob’s policy on (s0, sT ) is not fast, then Alice can use
⇡fast(s0,sT ) and increase her reward.

Thus we can see that in the finite, tabular, and Markovian
setting, the asymmetric self-play can be interpreted as a method
for training Alice and Bob to be able to transit between pairs
of states as efficiently as possible.

3. Related Work

Self-play arises naturally in reinforcement learning, and has
been well studied. For example, for playing checkers (Samuel,
1959), backgammon (Tesauro, 1995), and Go, (Silver et al.,
2016), and in in multi-agent games such as RoboSoccer
(Riedmiller et al., 2009). Here, the agents or teams of agents
compete for external reward. This differs from our scheme
where the reward is purely internal and the self-play is a way of
motivating an agent to learn about its environment to augment
sparse rewards from separate target tasks.
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to be rewarded, thus repeating Alice’s task instead of reversing
it. See Fig. 1 for an example, and also Algorithm 1.

In both cases, this self-play between Alice and Bob only in-
volves internal reward (detailed below), thus multiple rounds
can be performed without needing any supervisory signal from
the environment. As such, it comprises a form of unsupervised
training where Alice and Bob explore the environment and learn
how it operates. This exploration can be leveraged for some
target task by using Bob’s policy as the agent’s initialization.
Alternatively, the self-play and target task episodes can be inter-
leaved, biasing the exploration to be in service of the target task.

We choose the reward structure for Alice and Bob to encourage
Alice to push Bob past his comfort zone, but not give him
impossible tasks. Denoting Bob’s reward by Rb and Alice’s
reward by Ra, we use

Rb=�tb (1)

where tb is the time taken by Bob to complete his task (and
is set it set maximum value tb=tMax if Bob fails) and

Ra=max(0,tb�ta) (2)

where ta is the time until Alice performs the STOP action. Thus
Alice is rewarded if Bob takes more time, but the negative term
on her own time will encourage Alice not to take too many
steps when Bob is failing. For both reversible and resettable
environments, Alice must limit her steps to make Bob’s task
easier, thus Alice’s optimal behavior is to find simplest tasks
that Bob cannot complete. This eases learning for Bob since
the new task will be only just beyond his current capabilities.
The self-regulating feedback between Alice and Bob allows
them to automatically construct a curriculum for exploration,
a key contribution of our approach.

2.1. Parameterizing Alice and Bob’s actions

Alice and Bob each have policy functions which take as input
two observations of state variables, and output a distribution
over actions . In Alice’s case, the function will be of the form

aAlice=fA(st,s0),

where s0 is the observation of the initial state of the environ-
ment and st is the observation of the current state. In Bob’s
case, the function will be

aBob=fB(s
0
t,s

0
0),

where s00 = s0 when we have a reversible environment. In a
resettable environment s00 is the state where Alice executed
the stop action. Note that the “observations” can include a
parameterized model of a raw observation. When a target task
is presented, the agent’s policy function is aTarget =fB(s00t ,e),
where e is a special observation corresponding to the target task.

In the experiments below, we demonstrate our approach in
settings where f is tabular; where it is a neural network taking
discrete inputs, and where it is a neural network taking in
continuous inputs.

2.2. Universal Bob in the tabular setting

We now show that in environments with finite states, tabular
policies, and Markovian transitions, we can interpret the reset
and reverse games as training the agents to find policies that
can get from any state to any other in the least expected number
of steps.

Note that as discussed above, the policy table for both Alice
and Bob is indexed by (s0,sT ), not just by si. In particular,
with the assumptions above, this means that there is a policy
⇡fast such that ⇡fast(s0,sT ) has the smallest expected number
of steps to transition from s0 to sT . Call any such policy a fast
policy. It is clear that ⇡fast is a universal policy for Bob, such
that for any Alice policy ⇡a, ⇡fast is optimal with respect to ⇡a.
In a reset game, with deterministic transitions, ⇡fast nets Bob
a return of 0, and in the reverse game, the return of ⇡fast against
an optimal Alice also using ⇡fast can be considered a measure
of the reversibility of the environment.

For this discussion, assume that we are using the reset game or
the reverse game in a perfectly reversible environment. If ⇡A
and ⇡B are policies of Alice and Bob that are in equilibrium
(that is, one cannot make Alice better without changing Bob,
and one cannot make Bob better without changing Alice), ⇡B
is a fast policy. To see this, note that if ⇡B is not fast, then
we can replace it with ⇡fast, and then for any challenge (s0,sT )
that Alice gives Bob with nonzero probability and for which
⇡fast(s0,sT ) gives a smaller number of expected steps, Bob
will get a higher reward. On the other hand, if Alice is not
giving positive probability to some challenge (s0,sT ) (where
the initial probability of Alice starting at s0 is nonzero), and
if Bob’s policy on (s0, sT ) is not fast, then Alice can use
⇡fast(s0,sT ) and increase her reward.

Thus we can see that in the finite, tabular, and Markovian
setting, the asymmetric self-play can be interpreted as a method
for training Alice and Bob to be able to transit between pairs
of states as efficiently as possible.

3. Related Work

Self-play arises naturally in reinforcement learning, and has
been well studied. For example, for playing checkers (Samuel,
1959), backgammon (Tesauro, 1995), and Go, (Silver et al.,
2016), and in in multi-agent games such as RoboSoccer
(Riedmiller et al., 2009). Here, the agents or teams of agents
compete for external reward. This differs from our scheme
where the reward is purely internal and the self-play is a way of
motivating an agent to learn about its environment to augment
sparse rewards from separate target tasks.

Target state

task description (dummy vector)

Parameterizing Policy Functions

Initial state



Self-play equilibrium & Universal Bob 

• Claim: Under some strong assumptions (tabular policies, 
finite state, etc.), Bob must learn all possible tasks, i.e. 
learn how to transition between any pair of  states as 
efficiently as possible.
• Let’s assume the self-play has converged to a Nash 

equilibrium (can’t gain anything if  other’s policy is fixed)
• If  Bob fails on a certain task, then Alice would propose 

that task to increase her reward
• Then Bob must’ve seen this task and learnt it to increase 

his reward
• Thus: Bob must have learned all possible tasks.



Related work
• Self-play: checkers (Samuel, 1959), backgammon (Tesauro, 1995), 

and Go, (Silver et al., 2016), and RoboSoccer (Riedmiller et al., 2009)
• Uses external reward vs internal reward for ours

• GANs (Goodfellow et al., 2014): dialogue generation (Li et al., 
2017), variational auto-encoders (Mescheder et al., 2017) 
• Alice à “generator” of  hard examples; Bob à “discriminator” 

• Intrinsic motivation (Barto, 2013; Singh et al., 2004; Klyubin et al., 
2005; Schmidhuber, 1991): curiosity-driven exploration 
(Schmidhuber, 1991; Bellemare et al., 2016; Strehl & Littman, 2008; 
Lopes et al., 2012; Tang et al., 2016) 
• Reward for novelty of  state
• Ours: learning to transition between pairs of  states

• Robust Adversarial Reinforcement Learning (Pinto et al. 2017)
• Concurrent work; adversarial peturbations to state



Experiments

• Use Reinforce algorithm with learnt baseline and entropy 
regularization
• 2-layer NN model for Alice and Bob (separate)
• Train on 20% target task + 80% self-play episodes
• Discrete and continuous environments
• Measure target task reward vs # target task episodes

• Self-play episodes are “free”

• Baselines: 
• No self-play: just target task episodes 
• Random Alice: Alice takes random actions. Bob learns policy
• Exploration approaches: count-based & variants



Toy example: Long hallway
• Learn to navigate in a long corridor 
• Reverse self-play
• Simple tabular policies
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the models are also trained to minimize the distance between
the baseline value and actual reward. Thus after finishing an
episode, we update the model parameters ✓ by

�✓=
TX

t=1

"
@logp(a(t)|s(t),✓)

@✓

 
TX

i=t

r(i)�b(s(t),✓)

!

��
@

@✓

 
TX

i=t

r(i)�b(s(t),✓)

!2
3

5. (3)

Here r(t) is reward given at time t, and the hyperparameter �
is for balancing the reward and the baseline objectives, which
set to 0.1 in all experiments.

4.1. Long hallway

We first describe a simple toy designed to illustrate the function
of the asymmetric self-play. The environment consists of M
states {s1,...,sM} arranged in a chain. Both Alice and Bob
have three possible actions, “left”, “right”, or “stop”. If the
agent is at si with i 6=1, “left” takes it to si�1; “right” analo-
gously increases the state index, and “stop” transfers control to
Bob when Alice runs it and terminates the episode when Bob
runs it. We use “return to initial state” as the self-play task (i.e.
Reverse in Algorithm 1). For the target task, we randomly pick
a starting state and target state, and the episode is considered
successful if Bob moves to the target state and executes the
stop action before a fixed number of maximum steps.

In this case, the target task is essentially the same as the
self-play task, and so running it is not unsupervised learning
(and in particular, on this toy example unlike the other
examples below, we do not mix self-play training with target
task training). However, we see that the curriculum afforded
by the self-play is efficient at training the agent to do the target
task at the beginning of the training, and is effective at forcing
exploration of the state space as Bob gets more competent.

In Fig. 2 we plot the number of episodes vs rate of success at
the target task with four different methods. We set M=25 and
the maximum allowed steps for Alice and Bob to be 30. We use
fully tabular controllers; the table is of sizeM2⇥3, with a distri-
bution over the three actions for each possible (start, end pair).

The red curve corresponds to policy gradient, with a reward of
-1 given upon successful completion of the task. The magenta
curve corresponds to taking Alice to have a random policy
(1/2 probability of moving left or right, and not stopping till
the maximum allowed steps). The green curve corresponds
to policy gradient with an exploration bonus similar to (Strehl
& Littman, 2008). That is, we keep count of the number of
times Ns the agent has been in each state s, and the reward
for s is adjusted by exploration bonus ↵/

p
Ns, where ↵ is a

constant balancing the reward from completing the task with
the exploration bonus. We choose the weight ↵ to maximize

success at 0.2M episodes from the set {0,0.1,0.2,...,1}. The
blue curve corresponds to the asymmetric self-play training.

We can see that at the very beginning, a random policy for
Alice gives some form of curriculum but eventually is harmful,
because Bob never gets to see any long treks. On the other
hand, policy gradient sees very few successes in the beginning,
and so trains slowly. Using the self-play method, Alice gives
Bob easy problems at first (she starts from random), and then
builds harder and harder problems as the training progresses,
finally matching the performance boost of the count based
exploration. Although not shown, similar patterns are observed
for a wide range of learning rates.
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Figure 2. The hallway task from section 4.1. The y axis is fraction
of successes on the target task, and the x axis is the total number
of training examples seen. Standard policy gradient (red) learns
slowly. Adding an explicit exploration bonus (Strehl & Littman, 2008)
(green) helps significantly. Our self-play approach (blue) gives similar
performance however. Using a random policy for Alice (magenta)
drastically impairs performance, showing the importance of self-play
between Alice and Bob.

4.2. Mazebase

We now describe experiments using the MazeBase environment
(Sukhbaatar et al., 2015). These have discrete actions and
states, but sufficient combinatorial complexity that tabular
methods cannot be used. They consist of various items placed
on a finite 2D grid; the environment is randomly generated for
each episode.

For both self-play and the target task, we use an environment
where the maze contains a light switch, a key and a wall with
a door (see Fig. 1). An agent can open or close the door by
toggling the key switch, and turn on or off light with the light
switch. When the light is off, the agent can only see the (glow-
ing) light switch. There is also a goal flag item in the target task.

In self-play, an episode starts with Alice in control, who can
navigate through the maze and change the switch states until
she outputs the STOP action. Then, Bob takes control and tries
to return everything to its original state, restricted to visible
items (e.g. if light was off initially, then Bob does not need
to worry about the state of door because it was invisible) in the

Target task

Self-play

Target task



MazeBase: LightKey task

• Small 2D grid separated into two rooms by a wall
• The grid is procedurally generated

• Object/agent locations randomized 
for each episode

• Toggle the key to lock/unlock door
• Can’t go through a locked door

• Toggle the light on/off
• Only the switch is visible in dark

• Target task is to reach the goal flag 
in the opposite room when light
is off  and door is locked.



MazeBase: LightKey task
• Learn to navigate in a long corridor 
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reverse self-play. In the repeat version, the maze resets back to
its initial state when Bob takes the control, who tries to reach
the final state of Alice.

In the target task, the agent and the goal are always placed on
opposite sides of the wall. Also, the light and key switches are
placed on the same side as the agent, but the light is always off
and the door is closed initially. Therefore, in order to succeed,
the agent has to turn on the light, toggle the key switch to open
the door, pass through it, and reach the goal flag. Reward of
-0.1 is given at every step until the agent reaches the goal or
episode runs more than tMax=80 time steps.

In self-play, episodes are also limited to tMax = 80 time
steps, and reward is only given at the end of the episode.
Alice and Bob’s reward from Equ. (1) and (2) is scaled by
hyperparameter �=0.1 to match the target task reward.

Both Alice and Bob’s policies are modeled by a fully-connected
neural network with two hidden layers each with 100 and
50 units (with tanh non-linearities) respectively. The encoder
into each of the networks takes a bag of words over (objects,
locations); that is, there is a separate word in the lookup table
for each (object, location) pair. As described above, f takes as
input two states; these are combined after the shared encoder
layer by concatenation. Action probabilities are output by a
linear layer followed by a softmax. In addition, the model also
outputs a baseline value using a linear layer, which is trained
with mean-square loss to predict the cumulative reward. The
parameters of Alice and Bob are not shared.

Training used RMSProp (Tieleman & Hinton, 2012) with
learning rate of 0.003 and batch size 256. All parameters are
randomly initialized from N (0,0.2). We also use an entropy
regularization term on the softmax output, set to 0.003. During
each training episode, we randomly pick between self-play and
target tasks with 80% and 20% probabilities respectively unless
otherwise specified. Fig. 3 shows details of a single training
run, demonstrating how Alice and Bob automatically build a
curriculum between themselves though self-play.

4.2.1. BIASING FOR OR AGAINST SELF-PLAY

The effectiveness of our approach depends in part on the
similarity between the self-play and target tasks. One way to
explore this in our environment is to vary the probability of
the light being off initially during self-play episodes1. Note
that the light is always off in the target task; if the light is
usually on at the start of Alice’s turn in reverse, for example,
she will learn to turn it off, and then Bob will be biased to turn
it back on. On the other hand, if the light is usually off at the
start of Alice’s turn in reverse, Bob is strongly biased against
turning the light on, and so the test task becomes especially
hard. Thus changing this probability gives us some way to

1The initial state of the light should dramatically change the behav-
ior of the agent: if it is on then agent can directly proceed to the key.

adjust the similarity between the two tasks.

In Fig. 4, we set p(Light off)=0.5 during self-play and evaluate
both reverse and repeat forms of self-play, alongside two
baselines: (i) target task only training (i.e. no self-play) and
(ii) self-play with a random policy for Alice. We see that the
repeat form of self-play succeeds quickly while target task-only
training takes much longer2. The reverse form of self-play
and random Alice work comparably well, being in between
the other two in terms of speed.

Fig. 5 shows what happens when p(Light off)=0.3. Here
reverse self-play works well, but repeat self-play does poorly.
As discussed above, this flipping, relative to Fig. 4, can be
explained as follows: low p(Light off) means that Bob’s task in
reverse self-play will typically involve returning the light to the
on position (irrespective of how Alice left it), the same function
that must be performed in the target task. The opposite situation
applies for repeat self-play, where Bob needs to encounter the
light typically in the off position to help him with the test task.

In Fig. 6 we systematically vary p(Light off) between 0.1 and
0.9. The y-axis shows the speed-up (reduction in target task

2Training was stopped for all methods except target-only at
5⇥10

6 episodes.
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Figure 3. Inspection of a Mazebase learning run, using the environ-
ment shown in Fig. 1. (a): rate at which Alice interacts with 1, 2 or
3 objects during an episode, illustrating the automatically generated
curriculum. Initially Alice touches no objects, but then starts to
interact with one. But this rate drops as Alice devises tasks that
involve two and subsequently three objects. (b) by contrast, in the
random Alice baseline, she never utilizes more than a single object
and even then at a much lower rate. (c) plot of Alice and Bob’s
reward, which strongly correlates with (a). (d) plot of ta as self-play
progresses. Alice takes an increasing amount of time before handing
over to Bob, consistent with tasks of increasing difficulty being set.

MazeBase: LightKey task
# objects ( Random Alice)# objects touched by Alice



RL-Lab: Mountain Car

• Control a car stuck in 1D valley
• Need to build momentum by reversing

• Sparse reward
• +1 reward only if  it reaches the left hill top

• Hard task because random exploration fails
• Asymmetric environment
à repeat self-play
• As good as other 

exploration methods



RLLab: Swimmer Gather

• Control a worm with two flexible 
joints, swimming in a 2D viscous fluid 
• Reward +1 for eating green apples 

and -1 for touching red bombs
• Reverse self-play even though 

the environment is not strictly symmetric
• No apples or bombs during self-play
• Use only location (not full state) when deciding Bob’s 

success during self-play



RLLab: Swimmer Gather
• Mean & S.D. over 10 runs
• Reinforce on target task alone gets zero rewardIntrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Figure 7. A comparison of our self-play approach on MountainCar
task with VIME (Houthooft et al., 2016) and SimHash (Tang et al.,
2016) (figure adapted from (Tang et al., 2016)). We plot mean rewards
against the number of target task training steps (1 iter=5k steps),
excluding self-play training steps as they are unsupervised. Error
bars of ±1� are shown, using 10 runs of our approach. The task is
fairly straightforward, being quickly mastered by all three approaches,
which have similar performance. We also tried training on directly
this task with Reinforce (i.e. no self-play) but found that it was unable
to get any reward, despite the long training time.

worm just swims around but in the latter it must learn to swim
towards green apples and away from the red bombs.

The observation state consists of a 13-dimensional vector de-
scribing location and joint angles of the worm, and a 20 dimen-
sional vector for sensing nearby objects. The worm takes two
real values as an action, each controlling one joint. We add sec-
ondary action head to our models to handle this. As in the moun-
tain car, we discretize the output space (each joint is given 9 uni-
formly sized bins) to allow the use of discrete policy gradients.

The episode length is 500 steps for target tasks as in (Houthooft
et al., 2016; Tang et al., 2016), and 600 for self-play. In our
experiments we skip two frames with each action, but still
count them toward the episode length. The hyperparameters
are the same as MountainCar, except the entropy regularization
is only applied to the self-play episodes and batch size is 256.
Also, the self-play terminates when klb� lak< 0.3 where la
and lb are the final locations of Alice and Bob respectively.
Target tasks constitute 10% of the training episodes. Fig. 8
shows the target task reward as a function of training iteration
for our approach alongside VIME (Houthooft et al., 2016) and
SimHash (Tang et al., 2016). Ours can be seen to gain reward
earlier than the others, although it converges to a similar final
value to SimHash. A video of our worm performing the test
task can be found at https://goo.gl/Vsd8Js.

In Fig. 9 shows details of a single training run. The changes
in Alice’s behavior, observed in Fig. 9(c) and (d), correlate
with Alice and Bob’s reward (Fig. 9(b)) and, initially at least,
to the reward on the test target (Fig. 9(a)). In Fig. 10 we
visualize for a single training run the locations where Alice
hands over to Bob at different stages of training, showing how

the distribution varies.
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Figure 8. Evaluation on SwimmerGather target task, comparing to
VIME (Houthooft et al., 2016) and SimHash (Tang et al., 2016)
(figure adapted from (Tang et al., 2016)). Error bars are ±1� over
10 runs. With reversible self-play we are able to learn faster than
the other approaches, although it converges to a comparable reward.
Note that X-axis did not include self-play training steps as they are
unsupervised. Training directly on the target task using Reinforce
without self-play resulted in total failure.

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Iteration

T
a

rg
e

t 
ta

sk
 r

e
w

a
rd

(a)

0 500 1000
−1.5

−1

−0.5

0

0.5

1

Iteration

In
te

rn
a

l r
e

w
a

rd

(b)

 

 

Alice
Bob

0 500 1000
0

20

40

60

80

100

Iteration

#
 A

lic
e

 a
ct

io
n

s

(c)

0 500 1000
0

0.5

1

1.5

2

Iteration

A
lic

e
 d

is
ta

n
ce

(d)

Figure 9. A single SwimmerGather training run. (a): Rewards on
target task. (b): Rewards from reversible self-play. (c): The number
of actions taken by Alice. (d): Distance that Alice travels before
switching to Bob.

5. Discussion

In this work we described a novel method for intrinsically
motivated learning which we call asymmetric self-play. Despite
the method’s conceptual simplicity, we have seen that it can
be effective in both discrete and continuous input settings
with function approximation, for encouraging exploration and
automatically generating curriculums. When evaluated on
challenging benchmarks, our approach is comparable to current



RLLab: Swimmer Gather
• Policy trained with Reinforce + self-play



RLLab: Swimmer Gather
• Distribution of  locations where Alice hands over to Bob

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play
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Figure 10. Plot of Alice’s location at time of STOP action for the
SwimmerGather training run shown in Fig. 9, for different stages of
training. Note how Alice’s distribution changes as Bob learns to solve
her tasks.

state-of-the-art RL methods that incorporate an incentive for
exploration. Furthermore, it is possible show theoretically
that in simple environments, using asymmetric self-play with
reward functions from (1) and (2), optimal agents can transit
between any pair of reachable states as efficiently as possible.

However, there are limitations in the simple scheme we have
described; these suggest avenues for further work:

5.1. Meta-exploration for Alice

We want Alice and Bob to explore the state (or state-action)
space, and we would like Bob to be exposed to many different
tasks. Because of the form of the standard reinforcement
learning objective (expectation over rewards), Alice only
wants to find the single hardest thing for Bob, and is not
interested in the space of things that are hard for Bob. In the
fully tabular setting, with fully reversible dynamics or with
resetting, and without the constraints of realistic optimization
strategies, we saw in section 2.2 that this ends up forcing Bob
and Alice to learn to make any state transition as efficiently as
possible. However, with more realistic optimization methods
or environments, and with function approximation, Bob and
Alice can get stuck in sub-optimal minima.

For example, let us follow the argument in the third paragraph
of 2.2, and assume that Bob and Alice are at an equilibrium (and
that we are in the tabular, finite, Markovian setting), but now
we can only update Bob’s and Alice’s policy locally. By this
we mean that in our search for a better policy for Bob or Alice,
we can only make small perturbations, as in policy gradient
algorithms. In this case, we can only guarantee that Bob runs
a fast policy on challenges that Alice has non-zero probability
of giving; but there is no guarantee that Alice will cover all
possible challenges. With function approximation instead of

tabular policies, we can not make any guarantees at all.

Another example with a similar outcome but different mech-
anism can occur using the reverse game in an environment
without fully reversible dynamics. In that case, it could be that
the shortest expected number of steps to complete a challenge
(s0,sT ) is longer than the reverse, and indeed, so much longer
that Alice should concentrate all her energy on this challenge
to maximize her rewards. Thus there could be equilibria with
Bob matching the fast policy only for a subset of challenges
even if we allow non-local optimization.

The result is that Alice can end up in a policy that is not ideal
for our purposes. In figure 10 we show the distributions of
where Alice cedes control to Bob in the swimmer task. We
can see that Alice has a preferred direction. Ideally, in this
environment, Alice would be teaching Bob how to get from
any state to any other efficiently; but instead, she is mostly
teaching him how to move in one direction.

One possible approach to correcting this is to have multiple
Alices, regularized so that they do not implement the same
policy. More generally, we can investigate objectives for Alice
that encourage her to cover a wider distribution of behaviors.

5.2. Communicating via actions

In this work we have limited Alice to propose tasks for Bob
by doing them. This limitation is practical and effective in
restricted environments that allow resetting or are (nearly)
reversible. It allows a solution to three of the key difficulties
of implementing the basic idea of “Alice proposes tasks, Bob
does them”: parameterizing the sampling of tasks, representing
and communicating the tasks, and ensuring the appropriate
level of difficulty of the tasks. Each of these is interesting in
more general contexts. In this work, the tasks have incentivized
efficient transitions. One can imagine other reward functions
and task representations that incentivize discovering statistics
of the states and state-transitions, for example models of their
causality or temporal ordering, cluster structure.
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Discussion
• Simple methods that works with discrete and 

continuous environments 
• Meta–exploration for Alice
• We want Alice to propose diverse set of  tasks
• But Alice focuses on the single best task
• Multiple Alices? 

• Future works:
• Alice explicitly mark the target state
• Alice propose task by communication without doing it
• Alice propose a hypothesis and Bob test it

Paper: https://arxiv.org/abs/1703.05407


