

End-To-End **Memory Networks**

Sainbayar Sukhbaatar¹, Arthur Szlam², Jason Weston² and Rob Fergus²

¹New York University ²Facebook AI Research

Motivation

- Good models exist for some data structures
 - RNN for temporal structure
 - ConvNet for spatial structure
- But we still struggle with some type of dependencies
 - out-of-order access
 - long-term dependency
 - unordered set

Ex) Question & Answering on story

Sam moved to the garden Mary left the milk. John left the football. Daniel moved to the garden. out-of-order Sam went to the kitchen. Sandra moved to the hallway. Mary moved to the hallway. Mary left the milk. Sam drops the apple there

Q: Where was the apple after the garden?

Overview

- We propose a neural network model with external memory
 - Reads from memory with **soft attention**
 - Performs multiple lookups (hops) on memory
 - End-to-end training with **backpropagation**
- End-to-end Memory Network (MemN2N)

- It is based on "Memory Networks" by [Weston, Chopra & Bordes ICLR 2015]
 - Hard attention
 - requires explicit supervision of attention during training
 - Only feasible for simple tasks
 - Severely limits application of the model
- MemN2N is **soft** attention version
- Only need supervision on the final output

Memory Module

Memory Vectors

E.g.) constructing memory vectors with Bag-of-Words (BoW)

- 1. Embed each word
- 2. Sum embedding vectors

"Sam drops apple"
$$\rightarrow \vec{v}_{Sam} + \vec{v}_{drops} + \vec{v}_{apple} = \vec{m}_i$$

Embedding Vectors Memory Vector

E.g.) temporal structure: special words for time and include them in BoW

1: "Sam moved to garden"
2: "Sam went to kitchen"
3: "Sam drops apple"
$$\rightarrow v_{\text{Sam}} + v_{\text{drops}} + v_{\text{apple}} + v_3 = m_3$$

Question & Answering Answer kitchen Memory Module $0.1\vec{m}_1 + 0.7\vec{m}_2 + 0.2\vec{m}_3$ \vec{u}_2 Weighted Sum Controller $\{0.1, 0.7, 0.2\}$ \vec{u}_1 Dot product + softmax $\{\vec{m}_1, \vec{m}_2, \vec{m}_3\}$ 1: Sam moved 2: Sam went 3: Sam drops Where is Sam? to garden to kitchen apple there

Question

Input story

Related Work (I)

Hard attention Memory Network [Weston et al. ICLR 2015]

Related Work (II)

- RNNsearch [Bahdanau et al. 2015]
 - Encoder-decoder RNN with attention
 - Our model can be considered as an attention model with multiple hops
- Recent works on external memory
 - Stack memory for RNNs [Joulin & Mikolov. 2015]
 - Neural Turing Machine [Graves et al. 2014]
- Early works on neural network and memory
 - [Steinbuch & Piske. 1963]; [Taylor. 1959]
 - [Das et al. 1992]; [Mozer et al. 1993]
- Concurrent works
 - Dynamic Memory Networks [Kumar et al. 2015]
 - Attentive reader [Hermann et al. 2015]
 - Stack, Queue [Grefenstette et al. 2015]

Experiment on bAbI Q&A data

- Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015]
- Answer questions after reading short story
- Small vocabulary, simple language
- Different tasks require different reasoning
- Training data size 1K or 10K for each task

Sam walks into the kitchen. Sam picks up an apple. Sam walks into the bedroom. Sam drops the apple. Q: Where is the apple? A. Bedroom

```
Brian is a lion.
Julius is a lion.
Julius is white.
Bernhard is green.
Q: What color is Brian?
A. White
```

Performance on bAbI test set

Examples of Attention Weights

• 2 test cases:

Story (2: 2 supporting facts)	Hop 1	Hop 2	Hop 3							
John dropped the milk.	0.06	0.00	0.00							
John took the milk there.	0.88	1.00	0.00							
Sandra went back to the bathroom.	0.00	0.00	0.00							
John moved to the hallway.	0.00	0.00	1.00							
Mary went back to the bedroom.	0.00	0.00	0.00							
Where is the milk? Answer: hallway Prediction: hallway										

Story (16: basic induction)	Hop 1	Hop 2	Hop 3
Brian is a frog.	0.00	0.98	0.00
Lily is gray.	0.07	0.00	0.00
Brian is yellow.	0.07	0.00	1.00
Julius is green.	0.06	0.00	0.00
Greg is a frog.	0.76	0.02	0.00
What color is Greg? Answer: yellow Pre-	diction: yel	ow	

Experiment on Language modeling

- Data
 - Penn Treebank: 1M words 10K vocabText8 (Wikipedia): 16M words 40K vocab
- Model
 - Controller module: linear + non-linearity
 - Each word as a memory vector

next word

Attention during memory hops

Ongoing Work

2. Playing games

Memory

1:	y-3x0	block	nil	nil	nil
2:	y-3x-1	water	nil	nil	nil
3:	y-1x0	goal1	goal	nil	nil
4:	y1x-1	goal2	goal	nil	nil
5:	y-2x-4	goal3	goal	nil	nil
6:	y-3x-4	goal4	goal	nil	nil
7:	y-2x-3	color2	switch	nil	nil
8:	y0x0	agent1	agent	nil	nil
9:	if	color1	qoal3	switch	info
10:	if	color2	goal2	switch	info

http://arxiv.org/abs/1511.07401

Conclusion

- Proposed a neural net model with external memory
 - Soft attention over memory locations
 - End-to-end training with backpropagation
- Good results on a toy QA tasks
- Comparable to LSTM on language modeling
- Versatile model: also apply to writing and games

Code http://github.com/facebook/MemNN Poster #7

Thank you!

Code http://github.com/facebook/MemNN Poster #7

References (I)

- J. Weston, S. Chopra, and A. Bordes. Memory networks. In International Conference on Learning Representations (ICLR), 2015
- J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards AI-complete question answering: a set of prerequisite toy tasks. arXiv preprint: 1502.05698, 2015
- D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. ICLR, 2015
- K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. ICML, 2015
- L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville. Describing videos by exploiting temporal structure. ICCV, 2015
- J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-based models for speech recognition. NIPS, 2015

References (II)

- O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. NIPS, 2015
- M. C. Mozer and S. Das. A connectionist symbol manipulator that discovers the structure of context-free languages. NIPS, 1993
- A. Joulin, and T. Mikolov. Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets. NIPS, 2015
- A. Graves, G. Wayne, and I. Danihelka. Neural Turing Machines. arXiv preprint: 1410.5401, 2014
- A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, and R. Socher. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. arXiv preprint: 1506.07285, 2015
- K. Hermann, T. Kočiský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom. Teaching Machines to Read and Comprehend, arXiv preprint: 1506.03340, 2015

Results on 1k training data

	Baseline			MemN2N								
	Strongly						PE	1 hop	2 hops	3 hops	PE	PE LS
	Supervised	LSTM	MemNN			PE	LS	PE LS	PE LS	PE LS	LS RN	LW
Task	MemNN [21]	[21]	WSH	BoW	PE	LS	RN	joint	joint	joint	joint	joint
1: 1 supporting fact	0.0	50.0	0.1	0.6	0.1	0.2	0.0	0.8	0.0	0.1	0.0	0.1
2: 2 supporting facts	0.0	80.0	42.8	17.6	21.6	12.8	8.3	62.0	15.6	14.0	11.4	18.8
3: 3 supporting facts	0.0	80.0	76.4	71.0	64.2	58.8	40.3	76.9	31.6	33.1	21.9	31.7
4: 2 argument relations	0.0	39.0	40.3	32.0	3.8	11.6	2.8	22.8	2.2	5.7	13.4	17.5
5: 3 argument relations	2.0	30.0	16.3	18.3	14.1	15.7	13.1	11.0	13.4	14.8	14.4	12.9
6: yes/no questions	0.0	52.0	51.0	8.7	7.9	8.7	7.6	7.2	2.3	3.3	2.8	2.0
7: counting	15.0	51.0	36.1	23.5	21.6	20.3	17.3	15.9	25.4	17.9	18.3	10.1
8: lists/sets	9.0	55.0	37.8	11.4	12.6	12.7	10.0	13.2	11.7	10.1	9.3	6.1
9: simple negation	0.0	36.0	35.9	21.1	23.3	17.0	13.2	5.1	2.0	3.1	1.9	1.5
10: indefinite knowledge	2.0	56.0	68.7	22.8	17.4	18.6	15.1	10.6	5.0	6.6	6.5	2.6
11: basic coreference	0.0	38.0	30.0	4.1	4.3	0.0	0.9	8.4	1.2	0.9	0.3	3.3
12: conjunction	0.0	26.0	10.1	0.3	0.3	0.1	0.2	0.4	0.0	0.3	0.1	0.0
13: compound coreference	0.0	6.0	19.7	10.5	9.9	0.3	0.4	6.3	0.2	1.4	0.2	0.5
14: time reasoning	1.0	73.0	18.3	1.3	1.8	2.0	1.7	36.9	8.1	8.2	6.9	2.0
15: basic deduction	0.0	79.0	64.8	24.3	0.0	0.0	0.0	46.4	0.5	0.0	0.0	1.8
16: basic induction	0.0	77.0	50.5	52.0	52.1	1.6	1.3	47.4	51.3	3.5	2.7	51.0
17: positional reasoning	35.0	49.0	50.9	45.4	50.1	49.0	51.0	44.4	41.2	44.5	40.4	42.6
18: size reasoning	5.0	48.0	51.3	48.1	13.6	10.1	11.1	9.6	10.3	9.2	9.4	9.2
19: path finding	64.0	92.0	100.0	89.7	87.4	85.6	82.8	90.7	89.9	90.2	88.0	90.6
20: agent's motivation	0.0	9.0	3.6	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2
Mean error (%)	6.7	51.3	40.2	25.1	20.3	16.3	13.9	25.8	15.6	13.3	12.4	15.2
Failed tasks (err. $> 5\%$)	4	20	18	15	13	12	11	17	11	11	11	10
On 10k training data												
Mean error (%)	3.2	36.4	39.2	15.4	9.4	7.2	6.6	24.5	10.9	7.9	7.5	11.0
Failed tasks (err. $> 5\%$)	2	16	17	9	6	4	4	16	7	6	6	6

Table 1: Test error rates (%) on the 20 QA tasks for models using 1k training examples (mean test errors for 10k training examples are shown at the bottom). Key: BoW = bag-of-words representation; PE = position encoding representation; LS = linear start training; RN = random injection of time index noise; LW = RNN-style layer-wise weight tying (if not stated, adjacent weight tying is used); joint = joint training on all tasks (as opposed to per-task training).

Results on 10k training data

	Baseline			MemN2N									
	Strongly						PE	PE LS	1 hop	2 hops	3 hops	PE	PE LS
	Supervised		MemNN			PE	LS	LW	PE LS	PE LS	PE LS	LS RN	LW
Task	MemNN	LSTM	WSH	BoW	PE	LS	RN	RN*	joint	joint	joint	joint	joint
1: 1 supporting fact	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2: 2 supporting facts	0.0	81.9	39.6	0.6	0.4	0.5	0.3	0.3	62.0	1.3	2.3	1.0	0.8
3: 3 supporting facts	0.0	83.1	79.5	17.8	12.6	15.0	9.3	2.1	80.0	15.8	14.0	6.8	18.3
4: 2 argument relations	0.0	0.2	36.6	31.8	0.0	0.0	0.0	0.0	21.4	0.0	0.0	0.0	0.0
5: 3 argument relations	0.3	1.2	21.1	14.2	0.8	0.6	0.8	0.8	8.7	7.2	7.5	6.1	0.8
6: yes/no questions	0.0	51.8	49.9	0.1	0.2	0.1	0.0	0.1	6.1	0.7	0.2	0.1	0.1
7: counting	3.3	24.9	35.1	10.7	5.7	3.2	3.7	2.0	14.8	10.5	6.1	6.6	8.4
8: lists/sets	1.0	34.1	42.7	1.4	2.4	2.2	0.8	0.9	8.9	4.7	4.0	2.7	1.4
9: simple negation	0.0	20.2	36.4	1.8	1.3	2.0	0.8	0.3	3.7	0.4	0.0	0.0	0.2
10: indefinite knowledge	0.0	30.1	76.0	1.9	1.7	3.3	2.4	0.0	10.3	0.6	0.4	0.5	0.0
11: basic coreference	0.0	10.3	25.3	0.0	0.0	0.0	0.0	0.1	8.3	0.0	0.0	0.0	0.4
12: conjunction	0.0	23.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
13: compound coreference	0.0	6.1	12.3	0.0	0.1	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0
14: time reasoning	0.0	81.0	8.7	0.0	0.2	0.0	0.0	0.1	30.9	0.2	0.2	0.0	1.7
15: basic deduction	0.0	78.7	68.8	12.5	0.0	0.0	0.0	0.0	42.6	0.0	0.0	0.2	0.0
16: basic induction	0.0	51.9	50.9	50.9	48.6	0.1	0.4	51.8	47.3	46.4	0.4	0.2	49.2
17: positional reasoning	24.6	50.1	51.1	47.4	40.3	41.1	40.7	18,6	40.0	39.7	41.7	41.8	40.0
18: size reasoning	2.1	6.8	45.8	41.3	7.4	8.6	6.7	5.3	9.2	10.1	8.6	8.0	8.4
19: path finding	31.9	90.3	100.0	75.4	66.6	66.7	66.5	2.3	91.0	80.8	73.3	75.7	89.5
20: agent's motivation		2.1	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean error (%)	3.2	36.4	39.2	15.4	9.4	7.2	6.6	4.2	24.5	10.9	7.9	7.5	11.0
Failed tasks (err. $> 5\%$)		16	17	9	6	4	4	3	16	7	6	6	6

Table 1: Test error rates (%) on the 20 bAbI QA tasks for models using 10k training examples. Key: BoW = bag-of-words representation; PE = position encoding representation; LS = linear start training; RN = random injection of time index noise; LW = RNN-style layer-wise weight tying (if not stated, adjacent weight tying is used); joint = joint training on all tasks (as opposed to per-task training); * = this is a larger model with non-linearity (embedding dimension is d = 100 and ReLU applied to the internal state after each hop. This was inspired by [1] and crucual for getting better performance on tasks 17 and 19).

Sentence Representation

- Bag-of-Words
 - Embed each word into vectors and add them
- Position Encoding
 - Apply simple order dependent transformation before adding

$$l_{kj} = (1 - j/J) - (k/d)(1 - 2j/J)$$

Results on language modeling

	Penn Treebank					Text8						
	# of	# of	memory	Valid.	Test	# of	# of	memory	Valid.	Test		
Model	hidden	hops	size	perp.	perp.	hidden	hops	size	perp.	perp.		
RNN [15]	300	-	-	133	129	500	-	-	-	184		
LSTM [15]	100	-	-	120	115	500	-	-	122	154		
SCRN [15]	100	-	-	120	115	500	-	-	-	161		
MemN2N	150	2	100	128	121	500	2	100	152	187		
	150	3	100	129	122	500	3	100	142	178		
	150	4	100	127	120	500	4	100	129	162		
	150	5	100	127	118	500	5	100	123	154		
	150	6	100	122	115	500	6	100	124	155		
	150	7	100	120	114	500	7	100	118	147		
	150	6	25	125	118	500	6	25	131	163		
	150	6	50	121	114	500	6	50	132	166		
	150	6	75	122	114	500	6	75	126	158		
	150	6	100	122	115	500	6	100	124	155		
	150	6	125	120	112	500	6	125	125	157		
	150	6	150	121	114	500	6	150	123	154		
	150	7	200	118	111	-	-	-	-	-		

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing the number of memory hops improves performance.