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•  Good models exist for some data structures 
– RNN for temporal structure 
– ConvNet for spatial structure 

•  But we still struggle with some type of  
dependencies 
– out-of-order access 
–  long-term dependency 
– unordered set 

Motivation 



Ex) Question & Answering on story 

Sam moved to the garden. 
Mary left the milk. 
John left the football. 
Daniel moved to the garden. 
Sam went to the kitchen. 
Sandra moved to the hallway. 
Mary moved to the hallway. 
Mary left the milk. 
Sam drops the apple there. 
 

Q: Where was the apple after the garden?  

out-of-order 



Overview 

•  We propose a neural network model with 
external memory 
– Reads from memory with soft attention 

– Performs multiple lookups (hops) on memory 
– End-to-end training with backpropagation 

•  End-to-end Memory Network (MemN2N) 



•  It is based on “Memory Networks” by  
[Weston, Chopra & Bordes ICLR 2015] 
– Hard attention 
–  requires explicit supervision of  attention during 

training 
– Only feasible for simple tasks 
– Severely limits application of  the model 

•  MemN2N is soft attention version 
•  Only need supervision on the final output  



Memory 
Module 

Controller 
module 

Input 

MemN2N architecture 
Output 

supervision 

addressing 

read 

addressing 

read 

Memory vectors 
 (unordered) 

Internal state 
vector 



Memory Module 

Dot Product 

Softmax 

Weighted Sum 

To controller 
(added to  
controller state) 

Addressing signal 
(controller  
state vector) 

Memory vectors 

Attention weights 
/ Soft address 



Memory Vectors 
E.g.) constructing memory vectors with Bag-of-Words (BoW) 
1.  Embed each word  
2.  Sum embedding vectors 

E.g.) temporal structure: special words for time and include them in BoW 

Memory Vector Embedding Vectors 

Time embedding 

 \text{1: ``Sam drops apple''}\rightarrow v_\text{{\color{Red} Sam}} + v_\text{{\color{Red} drops}} + v_\text{{\color{Red} apple}} + v_\text{{\color{DarkGreen} 1}} = m_1  
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Related Work (II) 

•  RNNsearch [Bahdanau et al. 2015]  
–  Encoder-decoder RNN with attention 
–  Our model can be considered as an attention model with multiple 

hops 
•  Recent works on external memory 

–  Stack memory for RNNs [Joulin & Mikolov. 2015] 
–  Neural Turing Machine [Graves et al. 2014] 

•  Early works on neural network and memory 
–  [Steinbuch & Piske. 1963]; [Taylor. 1959] 
–  [Das et al. 1992]; [Mozer et al. 1993] 

•  Concurrent works 
–  Dynamic Memory Networks [Kumar et al. 2015] 
–  Attentive reader [Hermann et al. 2015] 
–  Stack, Queue [Grefenstette et al. 2015] 



Experiment on bAbI Q&A data 

•  Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015] 
•  Answer questions after reading short story 
•  Small vocabulary, simple language 
•  Different tasks require different reasoning 
•  Training data size 1K or 10K for each task  

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I
sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Examples of  Attention Weights 

•  2 test cases: 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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Experiment on Language modeling 

•  Data 
– Penn Treebank:   1M words   10K vocab 
– Text8 (Wikipedia):  16M words   40K vocab 

•  Model 
– Controller module: linear + non-linearity 
– Each word as a memory vector 
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Attention during memory hops 

Penn Treebank 
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Ongoing Work 

1.  Writing 

2.  Playing games 
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Conclusion 

•  Proposed a neural net model with external 
memory 
– Soft attention over memory locations 
– End-to-end training with backpropagation 

•  Good results on a toy QA tasks 
•  Comparable to LSTM on language modeling 
•  Versatile model: also apply to writing and games 

Code http://github.com/facebook/MemNN     Poster #7  



Thank you! 

Code http://github.com/facebook/MemNN     Poster #7  
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• LSTM: A standard LSTM model, trained using question / answer pairs only (i.e. also weakly
supervised). For more detail, see [21].

4.4 Results
We report a variety of design choices: (i) BoW vs Position Encoding (PE) sentence representation;
(ii) training on all 20 tasks independently vs jointly training (joint training used an embedding
dimension of d = 50, while independent training used d = 20); (iii) two phase training: training
with softmaxes from the start vs first without softmaxes, then with (linear start (LS)); (iv) varying
memory hops from 1 to 3.

The results across all 20 tasks are given in Table 1 for the 1k training set, along with the mean
performance for 10k training set 1. They show a number of interesting points:

• The best MemN2N models are reasonably close to the supervised models (e.g. 1k: 6.7% for
MemNN vs 12.6% for MemN2N with position encoding + linear start + random noise, jointly
trained and 10k: 3.2% for MemNN vs 7.1% for MemN2N with position encoding + linear start +
random noise), although the supervised models are still superior.

• All variants of our proposed model comfortably beat the weakly supervised baseline methods.

• The position encoding (PE) representation improves over bag-of-words (BoW), as demonstrated
by clear improvements on tasks 4, 5, 15 and 18, where word ordering is particularly important.

• The linear start (LS) to training seems to help avoid local minima. See task 16 in Table 1, where
PE alone gets 53.6% error, while using LS reduces it to 1.6%.

• Jittering the time index with random empty memories (RN) as described in Section 4.1 gives a
small but consistent boost in performance, especially for the smaller training set.

• Joint training on all tasks helps.

• More computational hops give improved performance. We give examples of the hops performed
(via the values of eq. (1)) over some illustrative examples in Fig. 2 and Appendix B.

Baseline MemN2N
Strongly PE 1 hop 2 hops 3 hops PE PE LS

Supervised LSTM MemNN PE LS PE LS PE LS PE LS LS RN LW
Task MemNN [21] [21] WSH BoW PE LS RN joint joint joint joint joint
1: 1 supporting fact 0.0 50.0 0.1 0.6 0.1 0.2 0.0 0.8 0.0 0.1 0.0 0.1
2: 2 supporting facts 0.0 80.0 42.8 17.6 21.6 12.8 8.3 62.0 15.6 14.0 11.4 18.8
3: 3 supporting facts 0.0 80.0 76.4 71.0 64.2 58.8 40.3 76.9 31.6 33.1 21.9 31.7
4: 2 argument relations 0.0 39.0 40.3 32.0 3.8 11.6 2.8 22.8 2.2 5.7 13.4 17.5
5: 3 argument relations 2.0 30.0 16.3 18.3 14.1 15.7 13.1 11.0 13.4 14.8 14.4 12.9
6: yes/no questions 0.0 52.0 51.0 8.7 7.9 8.7 7.6 7.2 2.3 3.3 2.8 2.0
7: counting 15.0 51.0 36.1 23.5 21.6 20.3 17.3 15.9 25.4 17.9 18.3 10.1
8: lists/sets 9.0 55.0 37.8 11.4 12.6 12.7 10.0 13.2 11.7 10.1 9.3 6.1
9: simple negation 0.0 36.0 35.9 21.1 23.3 17.0 13.2 5.1 2.0 3.1 1.9 1.5
10: indefinite knowledge 2.0 56.0 68.7 22.8 17.4 18.6 15.1 10.6 5.0 6.6 6.5 2.6
11: basic coreference 0.0 38.0 30.0 4.1 4.3 0.0 0.9 8.4 1.2 0.9 0.3 3.3
12: conjunction 0.0 26.0 10.1 0.3 0.3 0.1 0.2 0.4 0.0 0.3 0.1 0.0
13: compound coreference 0.0 6.0 19.7 10.5 9.9 0.3 0.4 6.3 0.2 1.4 0.2 0.5
14: time reasoning 1.0 73.0 18.3 1.3 1.8 2.0 1.7 36.9 8.1 8.2 6.9 2.0
15: basic deduction 0.0 79.0 64.8 24.3 0.0 0.0 0.0 46.4 0.5 0.0 0.0 1.8
16: basic induction 0.0 77.0 50.5 52.0 52.1 1.6 1.3 47.4 51.3 3.5 2.7 51.0
17: positional reasoning 35.0 49.0 50.9 45.4 50.1 49.0 51.0 44.4 41.2 44.5 40.4 42.6
18: size reasoning 5.0 48.0 51.3 48.1 13.6 10.1 11.1 9.6 10.3 9.2 9.4 9.2
19: path finding 64.0 92.0 100.0 89.7 87.4 85.6 82.8 90.7 89.9 90.2 88.0 90.6
20: agent’s motivation 0.0 9.0 3.6 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2
Mean error (%) 6.7 51.3 40.2 25.1 20.3 16.3 13.9 25.8 15.6 13.3 12.4 15.2
Failed tasks (err. > 5%) 4 20 18 15 13 12 11 17 11 11 11 10
On 10k training data
Mean error (%) 3.2 36.4 39.2 15.4 9.4 7.2 6.6 24.5 10.9 7.9 7.5 11.0
Failed tasks (err. > 5%) 2 16 17 9 6 4 4 16 7 6 6 6

Table 1: Test error rates (%) on the 20 QA tasks for models using 1k training examples (mean
test errors for 10k training examples are shown at the bottom). Key: BoW = bag-of-words
representation; PE = position encoding representation; LS = linear start training; RN = random
injection of time index noise; LW = RNN-style layer-wise weight tying (if not stated, adjacent
weight tying is used); joint = joint training on all tasks (as opposed to per-task training).

1More detailed results for the 10k training set can be found in Appendix A.
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1 Results on 10k QA dataset

Baseline MemN2N
Strongly PE PE LS 1 hop 2 hops 3 hops PE PE LS

Supervised MemNN PE LS LW PE LS PE LS PE LS LS RN LW
Task MemNN LSTM WSH BoW PE LS RN RN⇤ joint joint joint joint joint
1: 1 supporting fact 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts 0.0 81.9 39.6 0.6 0.4 0.5 0.3 0.3 62.0 1.3 2.3 1.0 0.8
3: 3 supporting facts 0.0 83.1 79.5 17.8 12.6 15.0 9.3 2.1 80.0 15.8 14.0 6.8 18.3
4: 2 argument relations 0.0 0.2 36.6 31.8 0.0 0.0 0.0 0.0 21.4 0.0 0.0 0.0 0.0
5: 3 argument relations 0.3 1.2 21.1 14.2 0.8 0.6 0.8 0.8 8.7 7.2 7.5 6.1 0.8
6: yes/no questions 0.0 51.8 49.9 0.1 0.2 0.1 0.0 0.1 6.1 0.7 0.2 0.1 0.1
7: counting 3.3 24.9 35.1 10.7 5.7 3.2 3.7 2.0 14.8 10.5 6.1 6.6 8.4
8: lists/sets 1.0 34.1 42.7 1.4 2.4 2.2 0.8 0.9 8.9 4.7 4.0 2.7 1.4
9: simple negation 0.0 20.2 36.4 1.8 1.3 2.0 0.8 0.3 3.7 0.4 0.0 0.0 0.2
10: indefinite knowledge 0.0 30.1 76.0 1.9 1.7 3.3 2.4 0.0 10.3 0.6 0.4 0.5 0.0
11: basic coreference 0.0 10.3 25.3 0.0 0.0 0.0 0.0 0.1 8.3 0.0 0.0 0.0 0.4
12: conjunction 0.0 23.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
13: compound coreference 0.0 6.1 12.3 0.0 0.1 0.0 0.0 0.0 5.6 0.0 0.0 0.0 0.0
14: time reasoning 0.0 81.0 8.7 0.0 0.2 0.0 0.0 0.1 30.9 0.2 0.2 0.0 1.7
15: basic deduction 0.0 78.7 68.8 12.5 0.0 0.0 0.0 0.0 42.6 0.0 0.0 0.2 0.0
16: basic induction 0.0 51.9 50.9 50.9 48.6 0.1 0.4 51.8 47.3 46.4 0.4 0.2 49.2
17: positional reasoning 24.6 50.1 51.1 47.4 40.3 41.1 40.7 18,6 40.0 39.7 41.7 41.8 40.0
18: size reasoning 2.1 6.8 45.8 41.3 7.4 8.6 6.7 5.3 9.2 10.1 8.6 8.0 8.4
19: path finding 31.9 90.3 100.0 75.4 66.6 66.7 66.5 2.3 91.0 80.8 73.3 75.7 89.5
20: agent’s motivation 0.0 2.1 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mean error (%) 3.2 36.4 39.2 15.4 9.4 7.2 6.6 4.2 24.5 10.9 7.9 7.5 11.0
Failed tasks (err. > 5%) 2 16 17 9 6 4 4 3 16 7 6 6 6

Table 1: Test error rates (%) on the 20 bAbI QA tasks for models using 10k training examples.
Key: BoW = bag-of-words representation; PE = position encoding representation; LS = linear start
training; RN = random injection of time index noise; LW = RNN-style layer-wise weight tying (if
not stated, adjacent weight tying is used); joint = joint training on all tasks (as opposed to per-task
training); ⇤ = this is a larger model with non-linearity (embedding dimension is d = 100 and ReLU
applied to the internal state after each hop. This was inspired by [1] and crucual for getting better
performance on tasks 17 and 19).

References

[1] B. Peng, Z. Lu, H. Li, and K. Wong. Towards Neural Network-based Reasoning. ArXiv preprint:
1508.05508, 2015.

1



Sentence Representation 

•  Bag-of-Words 
– Embed each word into vectors and add them 

•  Position Encoding 
– Apply simple order dependent  

transformation before adding 
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The issue with this is that it cannot capture the order of the words in the sentence, which is important
for some tasks.

We therefore propose a second representation that encodes the position of words within the
sentence. This takes the form: mi =

P
j lj ·Axij , where · is an element-wise multiplication. lj is a

column vector with the structure lkj = (1� j/J)� (k/d)(1� 2j/J) (assuming 1-based indexing),
with J being the number of words in the sentence, and d is the dimension of the embedding. This
sentence representation, which we call position encoding (PE), means that the order of the words
now affects mi. The same representation is used for questions, memory inputs and memory outputs.

Temporal Encoding: Many of the QA tasks require some notion of temporal context, i.e. in
the first example of Section 2, the model needs to understand that Sam is in the bedroom after
he is in the kitchen. To enable our model to address them, we modify the memory vector so
that mi =

P
j Axij + TA(i), where TA(i) is the ith row of a special matrix TA that encodes

temporal information. The output embedding is augmented in the same way with a matrix Tc

(e.g. ci =
P

j Cxij + TC(i)). Both TA and TC are learned during training. They are also subject to
the same sharing constraints as A and C. Note that sentences are indexed in reverse order, reflecting
their relative distance from the question so that x1 is the last sentence of the story.

Learning time invariance by injecting random noise: we have found it helpful to add “dummy”
memories to regularize TA. That is, at training time we can randomly add 10% of empty memories
to the stories. We refer to this approach as random noise (RN).

4.2 Training Details
Our models were trained using a learning rate of ⌘ = 0.01, with anneals every 25 epochs by ⌘/2
until 100 epochs were reached. No momentum or weight decay was used. The weights were
initialized randomly from a Gaussian distribution with zero mean and � = 0.1. When trained on all
tasks simultaneously with 1k training samples (10k training samples), 60 epochs (20 epochs) were
used with learning rate anneals of ⌘/2 every 15 epochs (5 epochs). All training uses a batch size of
32 (but cost is not averaged over a batch), and gradients with an `2 norm larger than 40 are divided
by a scalar to have norm 40. In some of our experiments, we explored commencing training with
the softmax in each memory layer removed, making the model entirely linear except for the final
softmax for answer prediction. When the validation loss stopped decreasing, the softmax layers
were re-inserted and training recommenced. We refer to this as linear start (LS) training. In LS
training, the initial learning rate is set to ⌘ = 0.005. The capacity of memory is restricted to the
most recent 50 sentences. Since the number of sentences and the number of words per sentence
varied between problems, a null symbol was used to pad them all to a fixed size. The embedding of
the null symbol was constrained to be zero.

On some tasks, we observed a large variance in the performance of our model (i.e. sometimes failing
badly, other times not, depending on the initialization). To remedy this, we repeated each training
10 times with different random initializations, and picked the one with the lowest training error.

4.3 Baselines
We compare our approach (abbreviated to MemN2N) to a range of alternate models:

• MemNN: The strongly supervised AM+NG+NL Memory Networks approach, proposed in We-
ston et al. [21]. This is the best reported approach in that paper. It uses a max operation (rather
than softmax) at each layer which is trained directly with supporting facts (strong supervision). It
employs n-gram modeling, nonlinear layers and an adaptive number of hops per query.

• MemNN-WSH: A weakly supervised heuristic version of MemNN where the supporting sen-
tence labels are not used in training. Since we are unable to backpropagate through the max
operations in each layer, we enforce that the first memory hop should share at least one word with
the question, and that the second memory hop should share at least one word with the first hop and
at least one word with the answer. All those memories that conform are called valid memories,
and the goal during training is to rank them higher than invalid memories using the same ranking
criteria as during strongly supervised training.

• LSTM: A standard LSTM model, trained using question / answer pairs only (i.e. also weakly
supervised). For more detail, see [21].
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Results on language modeling 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple

7


