
Master’s Thesis

Improving Temporal Coherence of
Image Features by Clustering

Technique Learned from
Moving Images

(
動画から学習したクラスタリング手法による
画像特徴の時間的なコヒーレンスの改良

)

Sainbayar Sukhbaatar
(スフバータル　サインバヤル)

Supervisor: Professor Kazuyuki Aihara (合原一幸　教授)

January 28, 2013

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo

Copyright c⃝ 2013, Sainbayar Sukhbaatar.

Abstract

Object recognition is difficult because the appearance of an object changes in many

different ways. To recognize objects robustly, one needs representations that are constant

despite those changes. Such invariant representations can be obtained by features with

low sensitivity to various visual transformations.

Spatial pooling is a widely used technique for extracting invariant features from images.

When the same feature is extracted from different locations of images, activations from

nearby locations can be clustered together (i.e., added together) to create invariance to

small spatial shifting. However, the invariance produced by spatial pooling is limited to

spatial shifts. In addition, spatial pooling can only be applicable to convolutional features

because spatial pooling makes clusters of features by using their spatial topography only.

In this thesis, we propose a novel pooling method, auto-pooling, that learns soft clus-

tering of features from image sequences. Auto-pooling is trained to improve the temporal

coherence of features, while keeping the information loss by pooling at minimum. Our

method does not use spatial information, so it can be used with non-convolutional models

too.

Experiments on images extracted from natural videos showed that our method can

cluster similar features together. When trained by convolutional features, the auto-pooling

outperformed the spatial pooling on an image classification task, even though the auto-

pooling does not use the spatial topology of features.

iii

Contents

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Outline of the thesis . 3

Chapter 2 Background 5

2.1 Unsupervised image feature learning 5

2.1.1 Autoencoders . 6

2.1.2 Sparse Autoencoders . 6

2.2 Convolution and Spatial Pooling . 7

Chapter 3 Related Work 9

Chapter 4 Auto-pooling 13

4.1 Introduction . 13

4.2 Details of implementation . 14

4.3 Invariance Score . 16

Chapter 5 Experiments 19

5.1 Pooling of image features . 19

5.2 Image Classification . 22

Chapter 6 Discussions 29

6.1 Auto-pooling and complex cells . 29

6.2 Auto-pooling and deep learning . 29

Chapter 7 Conclusion 31

7.1 Future Work . 31

Acknowledgments 33

Bibliography 35

AppendixA Whitening 37

1

Chapter 1

Introduction

1.1 Motivation

Object recognition is one of the hardest problems in machine learning. Its main difficulty

is that the appearance of an object changes over time in complex ways, which makes

simple pattern matching methods useless. For robust object recognition, one needs repre-

sentations that are constant over time, despite the changing appearance of an object. The

goal of this thesis is to introduce a novel model that can learn such temporally coherent

representations from image sequences.

Learning a temporally coherent representation is the same as learning features that

are invariant to various transformations such as transitions and rotations. The concept

of invariant features is not new, and dates back to Hubel and Wiesel’s seminal work [7],

where neurons in a cat’s visual cortex are studied. They found cells with simple receptive

fields that only responded to specific patterns (primarily to oriented edges) at specific

locations. More importantly, however, they also found cells with more complex behavior.

Those complex cells responded to specific patterns similar to simple cells, except they were

invariant to small shifts and rotations.

Inspired by simple and complex cells, the spatial pooling step is introduced to computer

vision architectures along with the convolution step [15]. In the convolution step, the

same feature is applied to different locations of an image. Then in the pooling step,

responses from a local neighborhood are pooled together (typically with a sum or a max

operation) to create invariance to small spatial shifting. The essence of pooling is to

make representations more abstract by discarding details that are irrelevant to object

identification, such as the exact location of an object. Another merit of the pooling step

is huge reduction of the dimension of data representations.

However, spatial pooling has several limitations. First, it only works with convolutional

models, where features have a spatial structure. Second, spatial pooling only improves the

invariance to spatial shifting. An ideal pooling should make features invariant to all types

of transformations, and it should work with features with no spatial structure. Invariance

to other types of transformations such as rotation and scaling is equally important in robust

2 Chapter 1 Introduction

spatial pooling auto-pooling

low-level

features

pooled

representation

Figure 1.1. Tradional spatial pooling and auto-pooling

object recognition. Beside from two-dimensional simple transformations, it is impossible

to create invariance to other transformations by convolution.

To make features invariant to complex transformations, it is necessary to learn the

pooling step from data. Spatial pooling can be considered as clustering of features, where

features close to each other are grouped together. Therefore, our goal is to learn clustering

of features from image data. Here, we have to note that feature clustering is not restricted

to “hard” clustering. A feature can belong to more than one cluster. Association between

a cluster and a feature can be represented by a non-negative real value, which is called

strength. Such clustering is often referred to as “soft” or “fuzzy” clustering.

In this thesis, we propose a novel pooling method, which we called auto-pooling. It

learns to perform soft clustering of features through a training with image sequences

(see Fig. 1.1). It tries to learn a pooling matrix, a non-negative matrix that represents

associations between features and clusters (i.e., pooling regions). Our model achieves

invariance by improving the temporal coherence of features, which is the same as making

their changes slower. However, we should avoid zero variance because features should be

informative about their inputs. This is achieved by minimizing the reconstruction error

in the way to autoencoders [21, 23].

There are several advantages in auto-pooling over traditional spatial pooling. First, it

produces invariance to all types transformations that present in natural videos. Second,

auto-pooling is more biologically plausible model for complex cells because their connec-

tions are learned from image sequences rather than being manually defined by arbitrary

heuristics. Third, auto-pooling can replace spatial pooling without modifying the low-level

feature learning. Finally, it can be used with non-convolutional models because it does

not use spatial information. This opens the door to utilize pooling in data types other

than images, such as speech and text.

We will show the effectiveness of our model with two types of experiments. In the

first experiment, we train an auto-pooling model with non-convolutional features. The

goal of this experiment is to see whether similar features are being clustered together. We

also defined and measured the invariance score of features before and after pooling. In

the second experiment, we compared auto-pooling with traditional spatial pooling on a

widely used image classification benchmark.

1.2 Outline of the thesis 3

1.2 Outline of the thesis

Chapter 2 presents basics of feature extraction. We introduce sparse autoencoders as a

representative of feature learning methods because their structure is similar to our model

and we used them in our experiments. Also, convolution and spatial pooling are explained.

In Chapter 3, we discuss studies related to our model, such as several variations of spatial

pooling. In Chapter 4, we give details of our model. We also introduce a score for

measuring invariance of features. Chapter 5 presents the results of our experiments on

natural videos and image classification. Chapter 6 have discussions of our pooling method

and Chapter 7 concludes this thesis.

5

Chapter 2

Background

2.1 Unsupervised image feature learning

x

J

x

y

W W’feature extraction reconstruction

input image

supervised

classification

cost function

Figure 2.1. An autoencoder as a preprocessing step in supervised classification

Image classification is a supervised task, but unsupervised learning models can be

helpful as a pre-processing step. Instead of using raw images in classification, it is better

to use meaningful features extracted from images such as edges. Unsupervised models

can learn such features from unlabeled data. Furthermore, unsupervised learning is much

cheaper than supervised learning, because it does not require expensive labeling.

Learning useful features from natural images has been one of the hottest topics in ma-

chine learning. Several models have been proposed, such as sparse Restricted Boltzmann

Machines [16], sparse autoencoders [21], denoising autoencoders [23] and independent com-

ponent analysis [9]. Although those models are very different from each other, features

learned by them all resemble to each other: oriented short edges at various locations. This

is similar to simple cells in the visual cortex.

Here, we will introduce only sparse autoencoders because we used them in our ex-

periments for their simplicity. In addition, it is convenient to present autoencoders here

because our pooling method is similar to them. However, our pooling method can be used

with any feature learning model.

6 Chapter 2 Background

2.1.1 Autoencoders

Antoencoders are an unsupervised model for learning compact representations of data.

They can be considered as a special type of traditional two-layer neural networks. The only

difference is that autoencoders use the same data for both input and output rather than

using separate data in training. This turns a supervised backpropagation algorithm into

an unsupervised learning. Then, the goal of learning becomes to accurately reconstruct

the input from hidden units as shown in Fig. 2.1.

In an autoencoder, input vector xi is encoded by

yi = f(Wxi + b),

where W is a encoding matrix and b is a bias vector for the hidden units. A widely used

activation function is

f(x) = (s(x1), s(x2), ..., s(xd))
T ,

where d is the dimension of vector x and

s(x) =
1

1 + e−x
.

This sigmoid activation function produces quasi-binary codes. Then in the decoding step,

the input is reconstructed by

x̂i = g(W ′yi + b′),

where W ′ is a decoding matrix and b′ is a bias vector for visible units. For real-valued

data, the identity function

g(x) = x

is used as an activation function for visible units. The training of autoencoders is driven

by a squared error cost function of

J =
1

N

N∑
i=1

1

2
∥xi − x̂i∥2,

which can be minimized by a simple gradient descent algorithm.

2.1.2 Sparse Autoencoders

Normal autoencoders usually have fewer hidden units than visible units to avoid a trivial

solution, in which each visible unit is represented by a single hidden unit. They are

considered as a compression model because they try to learn compact representations of

input data. However, it is known that such compression does not produce useful features

when trained by natural images.

Sparse autoencoders, on the other hand, have more hidden units than visible units.

When trained by small image patches, sparse autoencoders learn Gabor-like edge detectors.

2.2 Convolution and Spatial Pooling 7

They avoid the trivial solution by enforcing the following sparsity constraint on hidden

units

ρ̂k = ρ,

where ρ is a sparsity parameter and ρ̂k is the average activation of k-th hidden unit, which

is

ρ̂k =
1

N

N∑
i=1

yki .

This sparsity constraint is enforced by a cost function

Jsparse =

K∑
k=1

KL(ρ ∥ ρ̂k),

where Kullback-Leibler (KL) divergence is given by

KL(ρ ∥ ρ̂k) = ρ log
ρ

ρ̂k
+ (1− ρ) log

1− ρ

1− ρ̂k
.

It is also practical to use the weight regularization cost

JW =
1

2

M∑
m

K∑
k

(W 2
km +W ′2

mk),

which keeps weights from taking too large values. The total cost function for sparse

autoencoders is

Jtotal = J + βJsparse + αJW ,

where α and β are parameters for controlling the weights of sparsity and weight regular-

ization costs.

2.2 Convolution and Spatial Pooling

It is actually hard to learn features from images due to long computation time. Even for

32×32 small color images, the data dimension becomes 3072. As the image size increases,

the computation time grows at least quadratically. Convolution is a widely used trick in

those conditions to reduce the computation time.

When a feature learning model such as a sparse autoencoder is trained by natural

images, the same local feature emerges at different locations. Therefore, it will be sufficient

to learn local features at a single location and later duplicate them to all other locations.

This is what convolutional models do to reduce the computation time. First, they are

trained with small image patches to learn local features. Then, final global features are

constructed by applying each local feature to every locations of images (see Fig. 2.2).

However, convolutional feature extraction results in large number of features. For

each local feature, there are almost the same number of features as the number of pixels in

images. Luckily, features extracted by convolutional models have a topographic structure.

8 Chapter 2 Background

input image

feature maps

local feature

Figure 2.2. Convolutional feature extraction

They are organized into two-dimensional maps, each corresponding to a single local feature.

This spatial structure can be exploited by pooling, where each map is divided into small

squares by a grid. Then, activations in each square are combined by a pooling operation

(see Fig. 2.3). Most frequently used pooling operations are sum and max operations (it is

still in a debate which one is better).

feature map

∑

∑

pooling region

Figure 2.3. 4× 4 spatial pooling

Spatial pooling significantly reduces the number of features, which is vital in convolu-

tional models. Furthermore, features become more invariant to small spatial shifts after

pooling, because features from a local neighborhood are pooled together. This spatial

invariance of features significantly improves the object recognition accuracy.

9

Chapter 3

Related Work

Since the discovery of simple and complex cells, many methods have been proposed to

imitate the invariance property of complex cells. Those methods often have two-layer

structures, where the lower layer has units corresponding to simple cells, and the upper

layer has units corresponding to complex cells. We can divide those methods into two

categories based on whether the training of simple cells is dependent on complex cells.

In methods of the first category, the training of simple cells is completely independent

from that of complex cells. Neocognitron [5] is one of the first models to introduce spatial

pooling, which belongs to this category. Similar to the visual nervous system proposed

by Hubel and Wiesel [7], neocognitrons have hierarchical structure of alternating layers of

simple and complex cells. Each layer is composed from multiple two-dimensional maps.

Simple cells in the same map all have the same receptive fields, only differing in their

location. Receptive fields of complex cells, however, are fixed and restricted to a local

neighborhood of simple cells.

Since neocognitrons, several similar methods have been proposed. While the structure

of complex cells has been kept the same (as the spatial pooling step), training of simple

cells have replaced by many different methods. There are several variations of spatial

pooling differing in their complexity as shown in Fig. 3.1. The most simple spatial pooling

is bag-of-features, a widely used technique in computer vision, in which spatial information

is completely discarded. Actually, bag-of-features is equivalent to 1× 1 spatial pooling.

A more complex spatial pooling method is spatial pyramids [14]. Instead of dividing

feature maps into pooling regions by a single grid, spatial pyramids employ multiple grids

Figure 3.1. Different spatial pooling methods

10 Chapter 3 Related Work

with increasing granularity. This is the same as using multiple spatial pooling modules

with different grids in parallel. As a result, it becomes possible to use both global and

local features at the same time.

However, these spatial pooling methods all have fixed pooling regions defined by simple

grids. Their structures are relatively simple compared to feature learning methods, and

independent of training data.

There is a method [10] to choose spatial regions in more adaptive way. In this method,

training starts with many pooling region candidates, and only a few of them are used in

the final classification. This selection of pooling regions is achieved by supervised learning

incorporated into the training of a classifier. Pooling region candidates are populated by

random rectangular regions. Although this method learn pooling regions from data, it is

still restricted to convolutional models. Also, pooling regions are limited to rectangular

shapes. In addition, it is not suited for deep learning, where lower layers are trained in

unsupervised way.

Another method that improved spatial pooling is proposed by Coates and Ng in [3], in

which local features are clustered by their similarity. A similarity metric between features

is defined from their energy correlations. Then, nearby features from the same cluster are

pooled together to create rotation invariance. However, the invariance to spatial shifting is

still achieved through the same spatial pooling, which restricts this model to convolutional

models.

Methods [8, 20, 12] in the second category create invariance by placing features on

a two-dimensional topographic map. During training, nearby features are constrained

to be similar to each other. Then, invariant representations are achieved by clustering

features in a local neighborhood. However, those methods fix clustering manually, which

requires clusters to have the same size. Also, we cannot guarantee that the optimal feature

clustering can be mapped into two-dimensional space. Moreover, those methods cannot

be used with features already learned by another model.

Topographic ICA [8] is a method in the second category that extends Independent

Component Analysis (ICA) [11]. ICA is a generative model that tries to represent the input

by statistically independent components. When trained with image patches, components

of an ICA resembles to Gabor filters. However, there is still dependence left between

components learned by an ICA. Topographic ICA tries to remove this residual dependence

by adding a layer of complex cells at top of an ICA. In a topographic ICA, simple cells

(i.e. components) are organized into a two dimensional map. The main idea is that only

nearby simple cells are allowed to have energy correlation between their activation. This

topographic constraint produces a map of features where similar features are placed close

to each other. Then complex cells simply pools over simple cells at a local neighborhood to

create invariance. In contrast with spatial pooling, topographic ICA produces invariance

to rotation and scaling as well.

11

Our pooling method belongs to the first category because low-level feature learning is

independent from the pooling step. It is an advantage of auto-pooling, because models

for feature learning are well studied, and we can choose one that is best fit to the data.

Features can be extracted in a convolutional way like spatial pooling, but it is not required.

13

Chapter 4

Auto-pooling

4.1 Introduction

In this chapter, we introduce auto-pooling, a pooling method that performs soft clustering

on a set of features, which can be learned by a separate model. An auto-pooling model can

be trained in an unsupervised way to improve the temporal coherence of image features,

thus make them more invariant to various transformations. Such abstraction by invariance

is important in object recognition, where exact details like location and orientation are

often irrelevant.

The goal of auto-pooling is to cluster similar features together, so that a small transfor-

mation of an object will not affect its pooled representation. Two features are considered

similar if they are traversable by a small transformation such as shifting or rotation. For

example, edge detectors with nearby locations and similar orientations are similar to each

other. We use image sequences extracted from natural videos as the resource for learning

similarity between features. They are rich in various complex transformations and easy

to prepare. Moreover, image sequences are available to animals and humans as early as

their birth, so it is biologically plausible to utilize them in learning of complex-cell-like

invariant features.

Auto-pooling models can be viewed as a one-layer neural network. The visible units

represent low-level image features, and the hidden units represent cluster centers. We

will also refer clusters as pooling regions. Clustering is parameterized by the weights of a

neural network, which are required to be non-negative values to represent the associations

between features and clusters. A zero weight means that the feature does not belong to

the cluster, and a large weight means the opposite.

Like autoencoders, auto-pooling consists from encoding and decoding modules. Both

modules have linear activation functions, and share the same weights. The encoding

module performs actual pooling by adding features weighted by the clustering parameters.

The decoding module, on the other hand, reconstructs activities of features from its pooled

representation, and only used during training.

There are two desirable conditions in good pooling methods.

14 Chapter 4 Auto-pooling

yy

x

z

P

y’y’

x’

z’

P

invariance cost

reconstruction cost

input image

P
T

P
T

pooled

representation

auto-pooling

feature

extraction

Figure 4.1. Auto-pooling

Invariance property Pooling should keep the temporal coherence of the original image

sequence. In other words, if two images have the same object, which is likely true

for images from a continues sequence, then their pooled representations should be

the same. Another interpretation is that pooled representations should be slow, if

they are extracted from a continues image sequence.

Entropy property The information loss die to pooling should be minimum. If pooled

representations have too small information from the input images, then classification

will be difficult. In other words, the cross entropy between inputs and their pooled

representations should be large.

These two properties are in tension to each other. The invariance property can be fulfilled

with a simple solution of constant representations with zero variances. However, the

entropy property does not favor this trivial solution because variables with zero variances

also have zero entropy. The balance of these two properties is the key to invariant abstract

features.

Auto-pooling favors the invariance property by minimizing the distance between pooled

representations extracted from consecutive frames. The entropy property, however, is

not straightforward to obtain. Inspired by autoencoders, we approach this problem by

reconstructing feature activities back from its pooled representation. If the information

loss due to pooling were small, it would be possible to reconstruct the original input with

small error. Auto-pooling minimizes this reconstruction error during training.

Auto-pooling can be considered as a generalization of the traditional sum-pooling

method. However, the main advantage of auto-pooling is that it does not use spatial

information. Instead, they learn to pool similar features together using image sequences.

4.2 Details of implementation

Instead of image sequences, it is convenient to use images pairs taken from consecutive

video frames as training data. Such image pairs can be written as

X = {x1,x
′
1,x2,x

′
2, ...,xN ,x′

N}.

4.2 Details of implementation 15

If an object is present in image xi, then it is likely to be present in x′
i too, because xi and

x′
i are taken from frames with a very small time difference (33ms in the case of a video

with 30 frames per second). Before the training of an auto-pooling model, image features

should be already learned by a some other model. Let us assume that feature extraction

is done by

yi = f(xi), y′
i = f(x′

i).

If features are extracted by an autoencoder or a restricted Boltzmann Machine, the func-

tion f will be a sigmoid function. However, it is possible to use auto-pooling with any

feature extractor f , as long as yi and y′
i are non-negative.

The traditional spatial sum-pooling algorithm can be expressed as

zi = Pyi, z′i = Py′
i,

where P is a pooling matrix, and its elements are 0 or 1 depending on the topology of

feature maps. For example, the spatial pooling shown in Fig. 1.1 can be expressed as

P =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 ,

where columns represent features and rows represent pooling regions. Auto-pooling gen-

eralizes this traditional pooling by allowing the elements of P to take any non-negative

real-values. This turns hard clustering by spatial pooling into more adaptive soft cluster-

ing.

Our main goal is to learn pooling parameters Pij , without using the explicit spatial

information. The training of auto-pooling is driven by two cost functions. The first cost

function is

J1 =
1

N

N∑
i=1

1

2
∥zi − z′i∥22,

which tries to obtain the invariance property by minimizing the distance between pooled

representations zi and z′i. However, there is a trivial solution of P = 0 if we use only this

cost function.

The second cost function corresponds to the entropy property, and encourages pooled

representations to be more informative of their inputs. Input yi and y′
i are reconstructed

from their pooled representations by

ŷi = P T zi, ŷ′
i = P Tz′i

using the same parameters as the encoding module. The reconstruction error is minimized

by the cost function of

J2 =
1

N

N∑
i=1

1

2
(∥yi − ŷi∥22 + ∥y′

i − ŷ′
i∥22).

16 Chapter 4 Auto-pooling

The final cost function of auto-pooling is

J = λJ1 + J2,

where parameter λ ≥ 0 controls the weight of the invariance cost function. Larger λ will

make features more invariant by discarding more information from the original input.

Auto-pooling is similar to autoencoders, which are used in feature learning. In auto-

pooling, the input is reconstructed in the same way as auto-encoders. Also, the recon-

struction cost function J2 is exactly same to the cost function of autoencoders. However,

there are several important differences between them. First, parameters of auto-pooling

are restricted to non-negative values. Second, activation functions of auto-pooling are lin-

ear and have no biases. Third, auto-pooling has an additional cost function for temporal

coherence.

Auto-pooling can be trained by a simple gradient descent algorithm, which iteratively

minimizes the cost function using its gradient information. The update rule for each

iteration is

P ← P − γ
∂J

∂P
,

where the partial derivation is given by

∂J

∂P
=

1

N

N∑
i=1

[zi(ŷi − yi)
T + z′i(ŷ

′
i − y′

i)
T

+ P (ŷi − yi)y
T
i + P (ŷ′

i − y′
i)y

′T
i

+ λ(zi − z′i)(yi − y′
i)
T].

Here γ ≥ 0 is a learning rate. In practice, it is faster to divide training data to smaller

batches, and update parameters for each batch. Also the use of momentum in the gradient

descent shortens the training time [22].

4.3 Invariance Score

To evaluate our model, we define a score for measuring the invariance of features. A simple

metric for measuring invariance of a feature is its change between two subsequent frames,

which is

G =
1

T

T∑
t=1

∥g(xt)− g(xt+1)∥2.

Here, g(x) := f(x) if we are measuring invariance of raw features, and g(x) := Pf(x) if

we are measuring invariance of pooled representations. If a feature is invariant, then G

would be small.

However, we need an additional term to prevent features from cheating to reduce G.

If a feature simply have the same activation all the time, then G would become zero.

An ideal invariant feature should take the same value only if stimuli are from subsequent

4.3 Invariance Score 17

frames. If stimuli are chosen randomly, then an invariant feature should take different

values because it is likely that the inputs contain different objects. Therefore, the average

distance between two random frames

H =
1

T

T∑
t=1

∥g(xt)− g(xσ(t))∥2

should be large. Here σ is a random permutation of {1, 2, ..., T}. The invariance score is

defined by

F =
H

G
, (4.1)

which will be large only for invariant features. Later, we will use this score to compare

the invariance of features before and after pooling.

19

Chapter 5

Experiments

5.1 Pooling of image features

In this experiment, we trained an auto-pooling model with features learned from small

image patches. Our goal is to demonstrate that auto-pooling can cluster similar features

together, and thus increase their invariance. Invariance score of features is measured

before and after pooling. The training consisted from three steps: data preparation,

feature learning and pooling.

Step 1: Data preparation

Figure 5.1. Image pairs (each column) extracted from natural videos

We prepared small image pairs from natural videos. The videos used in this dataset

are obtained from http://www.vimeo.com (all videos had Creative Commons license). To

improve the diversity of the dataset, we included videos with natural scenes, animals (e.g.,

frogs, cats, birds, etc.) and artificial objects (e.g., cars, planes, etc.). Total of 44 videos

are used in the dataset, and their sizes were 640×340 pixels. Frame rates of the videos

were between 24 and 30 frames per second. We prepared image pairs from the videos by

the following procedure:

1. Select a random video from the repository

2. Choose two consecutive frames s(t), s(t+1) randomly from the selected video.

3. If ∥s(t) − s(t+1)∥1 > ε1, then discard those frames and go back to the previous,

because it is likely that those frames are not from a continues sequence. Here ε1 is

a some small number.

20 Chapter 5 Experiments

4. Extract 32× 32 patches from a random location of the image pair

s(t) → x

s(t+1) → x′

5. If min(σ(x), σ(x′)) < ε2 for a small constant ε2, then go back to step 4 to exclude

blank patches such as part of sky. Here σ(x) is the standard deviation of the elements

of x.

6. If σ(x− x′) < ε3, then go back to step 4 to skip identical patches.

7. Rescale patches x, x′ to 16× 16 and convert them to gray-scale.

8. Finally, all patches are contrast normalized and whitened, a process known to im-

prove feature learning [2]. For details about the whitening process, see Appendix A.

The final dataset contained 100 thousand pairs of small image patches. Some of the

image pairs are shown in Fig. 5.1.

Step 2: Unsupervised feature learning from image patches

Figure 5.2. Features learned from image patches by a sparse autoencoder

Since our pooling method is completely independent of the low-level feature learning,

we can use any model for feature learning. Here, we used a sparse autoencoder for its

simplicity and ease of training. The image pair dataset is used in the training, but the

pairing relationship of patches was ignored in this case.

The sparse autoencoder had 256 visible units, one for each pixel in image patches.

The hidden layer had 400 units, so it learned sparse over-complete representations. The

sparsity parameter were set to 2% and its weight β were set to 5. The training continued

for 3000 epochs, with batch size of 1000 and learning rate of 0.1. A subset of learned

features is shown in Fig. 5.2. As expected, most of the features were edge detectors,

similar to simple cells of the visual cortex.

5.1 Pooling of image features 21

Step 3: Clustering of features by auto-pooling

After obtaining image features, we trained a auto-pooling model on top of them. It had

50 hidden units, each corresponding to a cluster of features. The training continued for

50 epochs with batch size of 1000 and learning rate of 0.003. When the training finished,

pooling matrix P became a sparse matrix with few non-zero elements. A large Pij means

that j-th feature belongs to i-th cluster. However, a feature can belong to more than one

clusters because the only restriction on pooling matrix P is non-negativity.

Figure 5.3. Clusters (columns) of features learned from the image pair dataset

Since auto-pooling perform soft clustering, it is hard to visualize the clustering result.

For simplicity, however, we used a small threshold ε to show some learned clusters in

Fig. 5.3. For i-th cluster, we showed features with Pji > ε in a single column. It is evident

that similar features are clustered together. Also, one can see that the size of cluster varies

greatly depending on the nature of its features.

Figure 5.4. Diversity of edge detectors in clusters

To display clusters more clearly, we have shown some clusters of edge detectors in

more detail in Fig. 5.4, in which edge detectors are replaced by corresponding thin lines,

so we can see them together. This clearly shows the diversity of edge detectors inside each

cluster. It is important to note that there is variance in orientations beside from locations.

22 Chapter 5 Experiments

λ

Figure 5.5. Invariance scores of features before and after the pooling

Next, we measured the effect of clustering on image features using our invariance

score. Fig. 5.5 shows the scores of features before and after clustering, measured at

various values of parameter λ, which controls the weight of the invariance cost function.

The invariance score is significantly improved after the clustering, especially for large λ.

It is not surprising because larger λ puts more importance on the invariance cost, which

makes pooled representations less likely to change their activations between consecutive

frames. As a result, term G in Eq. 4.1 becomes small.

At the same time, however, the increase of λ diminishes the role of the reconstruction

cost, which was keeping pooled representations more informative about their inputs. Thus,

too large λ makes pooled representations over-invariant, having constant activations all

the time. This reduces H in Eq. 4.1. We can see this side effect of large λ from Fig. 5.5,

where the invariance score stopped its growth at large λ.

5.2 Image Classification

In this experiment, we aimed to show the effectiveness of our pooling method by applying

it to an image classification task. There are four steps in the training. The first three

steps are the same as the previous experiment, except that we used a convolutional model

to compare our method with the traditional spatial pooling method. The fourth step is

training of a classifier.

Step 1: Data preparation

We used two types of datasets for this experiment: an image pair dataset and a labeled im-

age dataset. The labeled image dataset is for unsupervised feature learning and supervised

classification. The image pair dataset is for only the training of auto-pooling.

We used CIFAR10 dataset [13] in the image classification, which contains labeled

images from ten categories (some samples are shown in Fig. 5.6). The dataset was divided

5.2 Image Classification 23

plane bird car cat deer

dog frog horse ship truck

Figure 5.6. Sample images from the ten categories of CIFAR10 dataset

into two parts: a training data containing 50 thousand images, and a test data containing

10 thousand images, each evenly distributed among the ten categories. All images were

32×32 pixels in size, and had three-color channels, with the total dimension of 3072.

Figure 5.7. Samples from the image pair dataset prepared from natural videos

For the training of auto-pooling, we used an image pair dataset prepared in the same

way as the previous experiment. The only difference was that the patches were 32×32
color images as the same as images in CIFAR10 dataset. Some samples from the image

pair dataset are shown in Fig. 5.7. It is evident that there are qualitative differences

between images from CIFAR10 and image pairs from natural videos. While images from

CIFAR10 are relatively complex and always have an object at their centers, images from

videos often show only a part of an object, and have much less details.

Step 2: Unsupervised feature learning

Figure 5.8. Features learned from small image patches

24 Chapter 5 Experiments

In the feature learning step, we used a convolutional model. We trained a sparse au-

toencoder with 100 hidden units on 6×6 small patches extracted from images in CIFAR10

dataset. Learned image features are shown in Fig. 5.8. Convolutional feature extraction

was done with one pixel stride. That means we extracted 100 features from every 6×6
patches of 32×32 images. This resulted in 100 feature maps of 27× 27.

Step 3: Clustering of features by auto-pooling

feature

3×3 spatial
pooling

λ = 0

λ = 1

λ = 4

λ = 16

Figure 5.9. Shape of pooling regions

Figure 5.10. Pooling regions learned by auto-pooling. The right side shows pooled re-
gions on feature maps, and the left side shows corresponding features

We trained an auto-pooling model with features extracted in a convolutional way from

5.2 Image Classification 25

the image pair dataset. First, we used only one feature map to show the effect of λ in

pooling regions. Nine different pooling regions learned at various values of λ are shown

in Fig. 5.9. Pij = 0 is shown in gray and large Pij is shown in white. When there is no

temporal coherence learning (i.e., when λ = 0), the learned pooling regions (i.e., white

areas in Fig. 5.9) were various in size and often divided into separate parts, which is

obviously not good pooling. However, when auto-pooling tries to improve the temporal

coherence of features (i.e., when λ > 0), divided regions are merged into a single continues

region. As λ increased, the pooling regions became more smoother, larger and likely to

overlap with each other. Compared to 3×3 spatial pooling, the pooling regions learned by

auto-pooling clearly show dependency on a feature (i.e., by having the same orientation).

When all 100 maps are used, it produced very large (exceeding 100 gigabytes) training

data for auto-pooling. Luckily, the training took only a few hours because we implemented

our algorithm on a graphic card (Tesla K20c) using CUDAMat library [18]. Some of the

learned feature clusters are visualized in Fig. 5.10. For each cluster, we showed 15 feature

maps with the largest pooling area (i.e. maxk(
∑

j∈Sk
Pij), where Sk is the set of features

in k-th feature map). Local features corresponding to the feature maps are also shown in

Fig. 5.10.

Unlike spatial pooling, each cluster learned by auto-pooling extended to multiple fea-

ture maps. Pooling regions (i.e., white areas in Fig. 5.10) of those maps usually have the

same continues spatial distribution, which will create spatial invariance in the same way

as spatial pooling. If we observe carefully those pooling regions, however, we can see the

small variance in their locations. This location variance is inversely related to the location

variance of corresponding local features. For example, if there is a edge detector in the

lower part of a 6× 6 local feature, corresponding pooling regions will have upper position

in 27× 27 feature maps.

Beside from pooling by spatial areas, auto-pooling also succeeded in clustering similar

local features. In some clusters, edge detectors of similar orientations are grouped together.

This will make pooled representations invariant to small rotations, which is a clear advan-

tage over traditional spatial pooling. In addition, clustering of local features only differing

in their locations will reduce the redundancy created by convolutional feature extraction.

Step 4: Classification

We compared our pooling method with traditional spatial pooling on a classification task,

in which a supervised classifier is trained by pooled representations of labeled images. For

auto-pooling, we varied the number of clusters from 400 to 2500. For spatial pooling, we

can only change the grid size. However, it is possible to use spatial pyramid to produce

better results. We denote a spatial pyramid that used 2×2 and 3×3 grids by 2×2+3×3.

In classification, we trained a linear SVM with pooled representations. The results

are shown in Table 5.1. We trained the classifier with two training data: a full data

with 5000 examples per class, and a smaller one with 1000 examples per class. Since

26 Chapter 5 Experiments

500 1000 1500 2000 2500 3000
56

58

60

62

64

66

68

70

the number of clusters

a
c
c
u

ra
c
y

auto−pooling (full)

auto−pooling (small)
spatial pooling (full)
spatial pooling (small)

Figure 5.11. Classification accuracy

the number of features is an important factor in classification, we plotted the accuracy

of the two pooling methods against the number of clusters in Fig. 5.11. Auto-pooling

outperformed traditional spatial pooling for the most time. Especially for small training

data, the difference between the two pooling methods was substantial. This indicates that

auto-pooling is better at generalization, which is the main goal of invariant features. The

spatial pooling, on other hand, shows the sign of over-fitting when its pooling regions are

increased.

5.2 Image Classification 27

Table 5.1. Classification accuracy on CIFAR10 (AP=auto-pooling, SP=spatial pooling)

Accuracy Accuracy
Pooling methods (full) (small)

AP (400 clusters) 64.6% 61.6%
AP (800 clusters) 67.2% 62.9%
AP (1300 clusters) 69.0% 63.8%
AP (1600 clusters) 69.4% 64.3%
AP (2000 clusters) 69.7% 65.0%
AP (2500 clusters) 69.3% 63.5%

SP (2× 2) 63.8% 60.7%
SP (3× 3) 68.2% 61.5%
SP (2× 2 + 3× 3) 68.2% 61.2%
SP (4× 4) 68.4% 58.7%
SP (2× 2 + 3× 3 + 4× 4) 68.2% 57.6%

29

Chapter 6

Discussions

6.1 Auto-pooling and complex cells

Computers already overtook humans on the processing of concrete information such as

manipulations of numbers or transformations of images at the pixel level. However, they

always struggle when it comes to incomplete information and abstract concepts. Humans

and animals are superior at making abstraction from concrete information. For example,

they can recognize many different faces as a single concept, and this abstraction is often

more important than exact details.

To build computer vision that can recognize objects robustly, many have studied the

brain to understand how it processes visual stimuli. Although the brain was too complex

to understand, they discovered some of its important properties. The visual cortex had a

hierarchical structure [4, 19] consisting from more than ten layers. At the bottom of that

hierarchy lied the primary visual area (V1), the best understood part of the visual cortex.

The information processing in V1 starts with simple cells followed by complex cells, which

shows small invariance to spatial shifts and rotations [7].

There are several methods that imitated the invariant behavior of complex cells, which

we introduced in Chapter 2. However, they cannot give an explanation to the learning

of complex cells because they fixes synapses of complex cells. Auto-pooling, on the other

hand, learns its parameters from image sequences. It showed that complex-cell-like in-

variance can be learned by maximizing the temporal coherence of features and their cross

entropy with input data.

6.2 Auto-pooling and deep learning

In recent years, deep learning models with deep hierarchical structures similar to the visual

cortex attracted great attentions for their success in object recognition [6, 17]. In most

cases, deep learning models consist of alternating layers of feature extraction and pooling.

It is shown that cells at higher layers can learn to respond to an abstract concept such

as cats or human bodies, even though the model is trained in a completely unsupervised

way [1].

30 Chapter 6 Discussions

Although spatial pooling is widely used in convolutional deep learning models, there is

a problem when it is used in higher layers. The spatial structure in convolutional features

decreases with the number of layers. Every time features are pooled together, the size

of feature maps gets smaller and the number of maps increases. Therefore, it might not

be optimal to use spatial pooling at higher layers. We provided an alternative pooling

method that does not rely on the spatial information. Even at the lowest level where

spatial pooling is more suited, auto-pooling produced better results.

31

Chapter 7

Conclusion

We proposed a novel pooling method that can generalize traditional spatial pooling to

transformations other than spatial shifting. Auto-pooling tries to make features more

temporally coherent, having slow changing activation when presented with a continuous

image sequence. The information loss due to pooling is kept minimum using the same cost

function as autoencoders. The main advantage of our method is that it learns to cluster

features, rather than relying on manual heuristic spatial division, in an unsupervised

manner.

When trained on image features learned by a sparse autoencoder, auto-pooling success-

fully clustered similar features together. Most of the clusters consisted of edge detectors

with nearby locations and similar orientations. In addition, auto-pooling significantly im-

proved the invariance score of features. We showed the effectiveness of our method by

comparing it with traditional spatial pooling on a real-world image classification task.

We trained a classifier by pooled representations produced from convolutional features.

Our pooling method gave better classification results, even though spatial pooling had the

advantage of using spatial information of features.

7.1 Future Work

In our experiments, the advantage of auto-pooling over spatial pooling was mainly re-

stricted to learning of rotation invariance. This is because auto-pooling is applied to

low-level features, which were mostly edge detectors with the size. Therefore, the only

possible variance besides spatial shifting was rotation. We believe that if we use auto-

pooling instead of spatial pooling in deep architectures, we can create invariance to more

complex transformations such as three-dimensional rotations and distortions. As men-

tioned before, auto-pooling can cluster features without using explicit spatial information.

This makes it possible to utilize pooling in data without spatial structure, such as speech

and text.

33

Acknowledgments

First of all, I would like to thank my adviser Professor Kazuyuki Aihara for accepting

me in his group and providing me with all resources necessary for my master’s study. I

am also grateful for Project Associate Professor Takaki Makino, who has been giving me

valuable instructions throughout my study. I would like to express my appreciation to

all members of Aihara-Suzuki-Kohno-Kobayashi Laboratories, especially to Taichi Kiwaki

for his helpful discussions and valuable technical supports. Finally, I have to note that

my thesis was impossible without the financial support from the Japanese Government

represented by MEXT.

35

Bibliography

[1] A. Coates, A. Karpathy, and A. Ng. Emergence of object-selective features in unsu-

pervised feature learning. In Advances in Neural Information Processing Systems 25,

pages 2690–2698. 2012.

[2] A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised

feature learning. In Proceedings of the 14th International Conference on Artificial

Intelligence and Statistics, pages 215–223, 2011.

[3] A. Coates and A. Ng. Selecting receptive fields in deep networks. In Advances in

Neural Information Processing Systems 24, pages 2528–2536. 2011.

[4] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate

cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991.

[5] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. Biological Cybernetics,

36(4):193–202, 1980.

[6] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313(5786):504–507, 2006.

[7] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106, 1962.

[8] A. Hyvärinen, P. Hoyer, and M. Inki. Topographic independent component analysis.

Neural Computation, 13(7):1527–1558, 2001.

[9] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and appli-

cations. Neural Networks, 13(4):411–430, 2000.

[10] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive field learning

for pooled image features. In Computer Vision and Pattern Recognition, 2012 IEEE

Conference on, pages 3370–3377. IEEE, 2012.

[11] C. Jutten and J. Herault. Blind separation of sources, part I: An adaptive algorithm

based on neuromimetic architecture. Signal Processing, 24(1):1–10, 1991.

36 Bibliography

[12] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. Le-Cun. Learning invariant features

through topographic filter maps. In Computer Vision and Pattern Recognition, 2009

IEEE Conference on, pages 1605–1612. IEEE, 2009.

[13] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.

Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In Computer Vision and Pattern

Recognition, 2006 IEEE Conference on, pages 2169–2178. IEEE, 2006.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[16] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area V2. In

Advances in Neural Information Processing Systems 20, pages 873–880. MIT Press,

2008.

[17] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional deep belief networks for

scalable unsupervised learning of hierarchical representations. In Proceedings of the

26th International Conference on Machine Learning, pages 609–616. ACM, 2009.

[18] V. Mnih. CUDAMat: a CUDA-based matrix class for Python. Technical report,

Department of Computer Science, University of Toronto, 2009.

[19] D. Mumford. On the computational architecture of the neocortex. Biological Cyber-

netics, 66(3):241–251, 1992.

[20] S. Osindero, M. Welling, and G. Hinton. Topographic product models applied to

natural scene statistics. Neural Computation, 18(2):381–414, 2006.

[21] M. Ranzato, S. Chopra, and Y. LeCun. Efficient learning of sparse representations

with an energy-based model. In Advances in Neural Information Processing Systems

19, pages 1137–1144. MIT Press, 2007.

[22] D. Rumelhart, G. Hintont, and R. Williams. Learning representations by back-

propagating errors. Nature, 323(6088):533–536, 1986.

[23] P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and composing

robust features with denoising autoencoders. In Proceedings of the 25th International

Conference on Machine Learning, pages 1096–1103. ACM, 2008.

37

Appendix A

Whitening

Whitening is a widely used pre-processing step in image processing. It removes simple

dependencies among image pixels. Nearby pixels in an image are likely to have the same

value. After whitening, however, it becomes impossible to predict the pixel’s value from its

neighbors. Samples of whitened images are shown in Fig. A.1. Whitening is useful because

it allows following learning models to focus on more interesting higher order dependencies.

In a strict sense, whitening is a decorrelation method that transforms a set of variables

into a new set variables by a simple matrix multiplication. Resulting new variables will be

uncorrelated, and their covariance matrix will equal to an identity matrix. The process is

named “whitening” because whitened data can be considered as a white noise.

Lets assume that input data has zero mean, and represented by a matrix X, where

columns correspond to data samples and rows correspond to variables. Then, whitened

data Y is will be calculated by

Y = WX,

where W is a whitening matrix.

Whitening matrix W can be found by a simple procedure. Since any rotation of W

will be also a solution, we restrict W by

W = W T .

From the definition of whitening, Y should satisfy

Y Y T = I

WXXTW T = I

W TWXXTW T = W T

W 2XXTW T = W T

W 2XXT = I

W 2 = (XXT)−1

W = (XXT)−
1
2 .

38 AppendixA Whitening

Figure A.1. Sample images from CIFAR10 dataset before and after whitening

red green blue

Figure A.2. Whitening filters

If we apply singular-value-decomposition to XXT , we will have

XXT = V DV T ,

where V is a some orthogonal matrix and D is a diagonal matrix. By using this equation,

we can find W by

W = (XXT)−
1
2

= (V DV T)−
1
2

= (V D−1V T)
1
2

= V D− 1
2V T .

Since D is a diagonal matrix, it is easy to calculate D− 1
2 .

Once we have whitening matrix W , we can whiten data by a simple matrix multi-

plication. The rows of W can be viewed as filters that are applied to images. However,

they usually have the same spatial structure, only differing in locations. Sample whitening

filters from each color channel are shown in Fig. A.2.

